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Abstract

We present Susi, a system for efficient semantic search on the English Wikipedia.
Susi combines full-text and ontology search. For example, for the query penicillin
scientist, Susi recognizes that scientist is a type of person, and returns a list of
names of scientists that are mentioned along with the word penicillin. We argue
that neither full-text search alone nor ontology-search alone is able to answer these
kinds of queries satisfactorily. Along with the list of entities matching the query
(the name of the scientists in the example), Susi also provides excerpts from the
text as evidence.
The data structure behind Susi is an index for the CompleteSearch search engine.
This index is enriched by constructs derived from facts from the Yago ontology. The
challenge was to do this in a way that keeps the index small and enables fast query
processing times. We present an annotation style, specifically designed to eliminate
index-blowup associated with adding semantic information. In our experiments on
the complete English Wikipedia (26GB XML dump), Susi achieved average query
times of around 200 milliseconds with an index blowup of only 42% compared to
ordinary full-text search.
We also examine result quality by comparing the contents of hand-compiledWikipedia
lists like "List of drug-related deaths" against the output of Susi for corresponding
semantic queries (drug death person). We come up with a simple typification of
the kinds of errors that can occur. One of our findings is that the vast majority of
false-positives is due to false omissions on the side of the Wikipedia lists, while the
vast majority of false-negatives is due to omissions in the Yago ontology.
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Zusammenfassung

Wir präsentieren Susi, ein System für effziente, semantische Suche auf der engli-
schen Wikipedia. Susi kombiniert Volltext-Suche mit Suche in Ontologien. Für eine
Anfrage penicillin scientist, zum Beispiel, erkennt Susi, dass scientist eine be-
stimmte Art Person ist, und findet entsprechend die Namen von Wissenschaftlern,
die mit dem Wort penicillin zusammen genannt werden. Wir argumentieren, dass
weder Volltext-Suche, noch Suche in Ontologien allein, diese Art von Anfragen zu-
friedenstellend beantworten können. Zusammen mit der Liste von Entitäten, die auf
die Anfrage passen, präsentiert Susi außerdem Ausschnitte aus dem Volltext als
Beleg.
Die Datenstruktur hinter Susi ist ein Index für die CompleteSearch Suchmaschine.
Dieser Index ist um aus der Yago Ontologie abgeleitete Konstrukte erweitert, die
die gewünschte, semantische Suche ermöglichen. Die Herausforderung war dabei,
den Index klein zu halten und schnelle Antwortzeiten auf Anfragen zu ermöglichen.
In unseren Experimenten auf der englischen Wikipedia (26GB XML dump), erzielt
Susi durchschnittliche Antwortzeiten von 200 Millisekunden mit einem Index, der
nur 42% größer ist als für herkömmliche Volltext-Suche.
Außerdem untersuchen wir, durch Vergleiche mit manuell erstellen Wikipedia Listen
wie „List of drug-related deaths“, die Qualität der Antworten, die Susi für entspre-
chende, semantische Anfragen (drug death person) liefert. Wir stellen eine einfa-
che Einteilung möglicher Fehler in Kategorien vor. Eine unserer Feststellungen ist
dabei, dass die Mehrheit der false-positives auf fehlende Einträge in den Wikipedia
Listen zurückzuführen sind, während die Mehrheit der false-negatives auf fehlende
Einträge in der Yago Ontologie zurückzuführen sind.
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1. Introduction

Imagine the following, simple question: What scientists have been involved with
penicillin? While this seems to be a question that could easily be answered with
the help of Wikipedia, imagine a query for a search engine that is supposed to fulfill
this purpose. Traditional search in the Wikipedia documents is not able to reflect
the semantics of our query. Finding the word scientist is not what we want. Instead,
we are interested in instances of the class scientist.

We follow the idea of combining full text and ontology search. In this thesis we
discuss the creation of our system Susi that enables semantic search on the En-
glish Wikipedia. Since the term semantic search is quite loose, we will discuss the
exact problem in the following. Section 1.1 introduces the motivation for work on
that topic and points out which aspects are being addressed. Subsequently, section
1.2 explicates the thesis’ contributions. Section 1.3, finally, gives a survey at the
structure of the rest of this document.

1.1. Motivation

The idea of a Semantic Web where computers are supposed to understand the mean-
ing behind the information on the Internet has been around for years. Modern
approaches usually involve the usage of some database that provides a formal repre-
sentation of the semantic concepts of a domain of interest. There is also great work
that accomplishes semantic search in this sense. Some of them are described further
in chapter 3. But while the technology works great, a query’s result can only be as
good as the database.

In general, many resources carry their information in somewhere in the text. Humans
can understand it well, but it starkly differs from formal, structured representations
that are used by existing approaches. Although information and facts can be suc-
cessfully extracted from full-text [Suchanek et al. (2007)], the amount and depth of
extracted information is always limited. Any extraction tries to distinguish impor-
tant facts from lesser important ones. Usually this evolves around a specialization
on some domain of interest. The majority of unspecific information remains hidden.

Search engines are without doubt the most popular way to find certain pieces of
information in a huge amount of text. However, they usually do not try to grasp the
semantics of a query. They rather aim to deliver results based on the occurrences of

5



Chapter 1 Introduction

query words in documents1. While this concept clearly has proven itself in practice,
we can still find some limitations.

Think of the query penicillin scientist. This query should return scientists
that are involved with penicillin in some way. First and foremost its discoverer
Alexander Fleming but also the Nobel laureates that accomplished its extraction
and many scientists that are involved in one way or the other. For ordinary queries
this task is typically solved quite well by search engines. However, the difficult part
of this particular kind of query is understanding the word scientist. Important
hits may evolve around documents where penicillin is mentioned close to an instance
of a scientist. Usually this is a name but a pronoun that references a scientist is
also very likely. Additionally, there may be a mentioning of some chemist, biologist
or whatever specific kind of scientist.

Consider the following example text from figure 1.1:

Alexander Fleming was a bacteriologist. He discovered penicillin by accident.

Figure 1.1.: Example Text Excerpt

While being obvious for a human reader, the information that this is a hit for a
scientist that has something to do with penicillin, is not obvious for a computer who
does not understand human language. First of all, this may be an excerpt of a huge
document that mentions many different scientists in several contexts. Hence, one
somehow has to preserve the fact that Alexander Fleming is mentioned very close to
penicillin or ideally that the pronoun “he” refers to him. Secondly, one has to know
that the particular Alexander Fleming, that is mentioned here, is a bacteriologist
or biologist. And finally, it has to be clear that a bacteriologist or biologist also is
a scientist.

Luckily, the required information on types of persons (or all entities in a wider sense)
is manageable. It is much more likely that semantic ontologies exist that contain
this kind of facts than that there are ontologies that cover basically everything that
is present somewhere in the full-text. Hence, combining the power of full-text search
with knowledge from semantic ontologies should enable new possibilities. Naturally,
there are lots of challenging questions involved and only some of them can be dealt
with at a time. Chapter 2 points out which of them are taken into consideration for
this thesis, which approaches are chosen to realize them and discusses this choice.

1Modern search engines are able to find similar words in the sense of error-tolerant search [Celikik
and Bast (2009)], handle synonyms and more. However, these refinements are not relevant for
the following argument and not discussed further here.
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1.2 Contributions

1.2. Contributions

This thesis presents the power of the combination of ontology and full-text search.
Contributions include:
• Susi, a fully operational system based on an index for the English Wikipedia

that allows the CompleteSearch [Bast and Weber (2007)] search engine hand-
ing queries that feature semantic categories.
• Heuristics for simple entity recognition in Wikipedia pages.
• Development, implementation and comparison of different concepts for anno-

tating entities with their semantic categories.
• An implementation that fits the modular architecture of the CompleteSearch

search engine, including:

– A parser for the wikipedia markup that recognizes and handles entities.
– Tools that extract relevant knowledge from Yago [Suchanek et al.

(2007); Suchanek (2009)] and combine it with Wikipedia entities.
– Integration in the CompleteSearch engine by providing files that stick to

the standards used by CompleteSearch.

• An evaluation framework for semantic queries. Both, general difficulties with
semantic search and those specific to susi are identified and classified into
groups of problems.

While we are able to present a demo version that works nicely, there are still many
things to improve. This thesis contains an outlook on possible future improvements.
Some of them already include concrete solutions that can be put into practice with-
out much effort, others only give an outlook on more complex problems that should
be addressed in the future. However, all of them do contribute towards semantic
Wikipedia search.

1.3. Structure of this Thesis

This document is separated into six chapters. Each chapter is supposed to provide
the answer to a specific question.
Why do we do all this? This first chapter has introduced the problem and pointed

out why we expect interesting possibilities for semantic search that have not
been researched yet. Also, we have seen the contributions we wish to make by
the construction of our system susi and its discussion in this document.

What exactly do we do? In the second chapter, we define the scope of this thesis
and hence the scope of Susi. We want to make clear what aspects we want to
cover now, which ones are postponed and give reasons for that choice.

7



Chapter 1 Introduction

What have others done? Chapter 3 presents what other researchers have con-
tributed to the field. We identify and briefly examine related work concerning
semantic search and point out where our approach differs.

How do we do it? The fourth chapter is the main chapter of this thesis. We present
our solution step by step and try to give a general understanding for all aspects
relevant to Susi. Finally, we reconsider a simplified example and try to see all
of the steps discussed orchestrated and working together in action.

How well did we do it? Chapter 5 contains an evaluation of our work. We examine
both, quality and performance of Susi on an experimental basis. We identify
problems within the current version and relate the observed issues to them.

How can we improve? The final chapter contains a discussion. After a short con-
clusion, we present possible future work as a list. Whenever possible, we also
try to state solutions for the problems to be tackled in the future and give an
estimation of how much effort is involved for which point.

Throughout this document, we try to establish the query penicillin scientist
as what could be called a “running example”. Whenever possible, we relate the
current topics to this example and demonstrate their purpose by showing how they
contribute to processing this query.

8



2. Scope of this Thesis

This chapter points out the scope of this thesis. First we give a reason for choosing
the general approach of full-text search with additional semantic categories and
describe why we implement this as index with semantic annotations. Secondly we
discuss why this thesis is limited to the full English Wikipedia. Finally we explain
why the Yago ontology [Suchanek et al. (2007); Suchanek (2009)] has been chosen
as source of the semantic knowledge that is used to enhance the index we build.

2.1. Choice of the general Approach

Since the term semantic search is quite inaccurate, numerous approaches arise from
research in this area. Usually, they even aim to achieve different goals. Some of
them are described in detail in chapter 3. In this chapter, however, we discuss
which approach is followed by this thesis and why we chose it.

Recall our goal as it was discussed in Motivation (sec. 1.1). We want to solve queries
of the form penicillin scientist, similar to the way various search engines solve
such queries. That means that we want to receive a list of documents1 that match
our query words. Specifically, we want to receive documents that match the meaning
of the words. As discussed earlier, a sentence that is a proper hit should contain the
words penicillin and chemist, or penicillin and the name Alexander Fleming and so
on.

In [Guha et al. (2003)] the authors distinguish between two kinds of search: naviga-
tional search, which is supposed to find a document that is relevant for the query,
and research search that is supposed to gather information on an object denoted
by the query. However, there is also a third, interesting kind of search. Consider
the example above again. It is entirely conceivable to understand the query in a
sense of: “Which scientist has something to do with penicillin?”. Likewise, imagine
a query penicillin discovered scientist to find out who actually discovered
penicillin. If we simply regard our search results and additionally distinguish which
exact word occurrence lead to a hit, i.e. the word “biologist”, the name “Alexander
Fleming” or the name “Howard Florey2”, we can easily provide answers to this kind

1for the sake of this argument it does not matter if the term “documents” refers to documents in
a classical sense or if it only refers to some unit of words; a sentence for instance.

2Howard Florey is a scientist invloded in the extraction of penicillin as a drug.
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Chapter 2 Scope of this Thesis

of search, too. Doubtless, enabling this kind of search can be really useful and hence
it is the main aim of this thesis.

Note, that our goal is to exceed simply giving an answer to the query. The matching
sentence in the document acts as evidence for that fact.

In order to reach this goal, we need to know about the semantic relations between
certain words on the one hand, and on the other hand, to comprise the knowledge
about co-occurrence of words in our document collection. In the example above, this
refers to facts like “a chemist is a scientist” or “Alexander Fleming is a scientist”
and to the fact that the word “penicillin” co-occurs with some sort of scientist in our
documents. We use two sources of input: A document collection with lots of facts
(see Limitation on the English Wikipedia (sec. 2.2) for why the English Wikipedia
was chosen for that purpose) and an ontology that provides the semantic information
we need (see Incorporation of the Yago Database (sec. 2.3) for why Yago [Suchanek
et al. (2007)] was chosen). Naturally, we need to combine this information in a way
that enables really efficient queries, since the amount of data will be huge. Basically,
we can distinguish two approaches:

1. Adding the information from the the document collection’s text to the ontology
and keep the ontology in a well-suited data structure that allows efficient
queries.

2. Constructing an index on the words in the document collection, just like com-
mon search engines do and somehow add the additional knowledge from the
ontology.

As pointed out before, no valuable information should be lost and we do not want to
restrict ourselves on a certain domain. Hence, we end up with a huge amount of data.
The current version of the English Wikipedia, at the time of writing this thesis, has
more than 1.4 billion word occurrences in about 130 million sentences. Assume the
semantic ontology is represented in RDF3 (Resource Description Framework), which
is a very reasonable format that is used by many well-known ontologies, including
Yago. If we really were to model co-occurrence with all words that possibly matter,
we would end up with billions of triples. This is quite large regarding that this
year’s Semantic Web challenge4 encourages researchers to present useful end-user
applications that use their so-called “billion triples” data set with 3.2 billion triples.
Hence, we know for a fact that the resulting ontology would be of critical size.

Classical search engines and their indices, on the other hand, operate on even larger
data sets without problems. Just think of the big web search engines as an extreme
example. They create an index that allows to look up in which documents some

3The Resource Description Framework (RDF) Carroll and Klyne (2004) is a W3C specification
for modelling facts. A single fact is represented as subject-predicate-object triple, e.g. “al-
bert_einstein - isA - physicist”. Conceptually, multiple facts form a directed, labeled graph.
See Carroll and Klyne (2004) for further details.

4http://challenge.semanticweb.org/
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2.2 Limitation on the English Wikipedia

word occurs within a few milliseconds. For queries with multiple words, they can in-
tersect the document list. See chapter 4 for more detailed information on this topic.
Consequently, we want to use such an index and somehow incorporate knowledge
from our ontology.
The information from the ontology can be added to the index in various ways. We
use annotations that simply are additional words written to the index. Details are
discussed in chapter 4. Anyway, all techniques that are around for search engines
obviously still apply for such an augmented index; in particular prefix search which
is of high importance for our approach as discussed later. Still, the additional
annotations may possibly blowup the index size and hence spoil everything. The
index blowup is one of the main issues addressed by this thesis and the steps that
provide a solution are outlined in chapter 4.

2.2. Limitation on the English Wikipedia

The previous chapter explains the need for a document collection. The English
Wikipedia is great in both ways, rewarding to perform semantic search on, and
comparatively easy to use.
First of all, it is a huge data set and full of interesting facts. After all, it is the
largest encyclopedia ever assembled. Hence, being able to perform semantic search
on this source is without a doubt really valuable. Secondly, from our perspective,
several facts make it really easy to work with. Documents have a common structure
that is a lot clearer than the structure of an arbitrary collection of web pages, for
instance. There is always a title, headlines, paragraphs and the whole Wikipedia
is available in XML5 format. The size of this dump currently exceeds 26GB so we
are able to deal with decent collection size. Last but not least, entity recognition
in full-text is immensely simplified for correctly maintained Wikipedia pages, since
the first mentioning of some entity is always supposed to be linked to the entity’s
article. This fact allows for simple heuristics to perform decently in recognizing
entities, whereas more complex rules can be added to improve the recognition even
further. More details on entity recognition are given in chapter 4.

2.3. Incorporation of the YAGO database

In addition to the document collection as main source of facts, we previously pointed
out the need for an ontology that contains facts on the relations between words, e.g.
“a chemist is a scientist”, “a scientist is a person” or “a person is a living thing”.
This kind of knowledge is not easy to gather and requires an immense amount work
that only humans can do. Fortunately there is a project called WordNet [Miller

5http://download.wikimedia.org/enwiki/
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Chapter 2 Scope of this Thesis

(1994)] that contains exactly this kind of information. WordNet is described further
in chapter 4.
Since there is no alternative to WordNet at the time of writing this thesis, an
ontology has to make use of it in order suit our needs. Yago [Suchanek et al. (2007);
Suchanek (2009)] does fulfill that criteria. Additionally, Yago explicitly establishes
the relation between WordNet’s entities and Wikipedia categories and ultimately
even contains “isA”-facts for entities, e.g. the fact that “Alexander Fleming is a
microbiologist”. The actual content and structure of Yago is described later in this
document and not of importance here. Summing up, we want to make clear that
Yago offers everything our search requires from an ontology and its closeness to
the English Wikipedia highly facilitates its incorporation.

12



3. Related Work

Considering semantic search in general, most research features search in ontologies
in Rdf [Carroll and Klyne (2004)] format. Usually this goes hand in hand with a
query language. So in a way, all kinds of engines that enable a query language for
Rdf graphs can be seen as related work. Rdf-3x [Neumann and Weikum (2008)]
is presented exemplarily. Related work with exactly the same goal as this thesis,
on the other hand, is quite rare. The only publication we know of, Ester [Bast
et al. (2007)], is discussed in the beginning of this chapter. Subsequently, we regard
another approach. In [Suchanek (2009)] F. Suchanek describes the Yago ontology
and its automatic construction and growth. Although this is no search engine at
all, it, first of all, served as an important foundation for this thesis. Secondly,
enabling semantic search by querying ontologies requires automated construction of
the later and hence projects like Yago are inevitable for this approach and should
be mentioned here.

3.1. ESTER

From all existing work, Ester (Efficient Search on Text, Entities, and Relations)
[Bast et al. (2007)] is the project that shares the most similarities with Susi. The
fundamental understanding of semantic search, i.e. how queries look like and what
results are desired, goes hand in hand with the goal of this thesis. On top of that,
the combination of Yago and the English Wikipedia is also used for Ester. In
order to accomplish its goal, Ester reduces the problem of semantic search to two
operations: prefix search and joins. In [Bast et al. (2007)], the authors precisely
carry out how Ester works in general. This is not repeated in this document.
Instead we consider an example query, examine how Ester solves it and do some
foreshadowing on which aspects are handled differently in this thesis.

Consider our example query penicillin scientist. Ester uses an index with
word-in-documents occurrences that allows efficient prefix-search. For penicillin*,
the first part of the query, a simple look-up yields a list of pairs of words that start
with the prefix penicillin and the documents in which they occur. For our example
query, a slightly different query is actually processed, i.e. penicillin person:*
(the reason for this extension is pointed out below) which returns the following list:

13



Chapter 3 Related Work

l1 = {(w, d) | w is a word that starts with the prefix "person:";
d is a list of documents in which wand the word "penicilin" occur.}

The second part of the query is more interesting, since the additions for handling
semantics come into play here. In general, Ester uses the following concept: Occur-
rences of entities are recognized in the text and special words, marking an occurrence
of the recognized entity, are written to the index. Additionally, facts about each en-
tity are located at a certain position in the document that describes the entity itself.
For semantic queries, the entity occurrences are joined with the entity’s facts.
So now let us examine this principle in practice and see how the second part of
our query is handled. First of all, Ester has to decide if there is a semantic class
that fits the query word scientist. Therefore, it launches a query of the form
baseclass:scientist* . In this case, the query would be successful and the class
person would be found. This class is used as the level of detail on which joins are
performed. On a side note, wise choice of this base-classes is necessary to avoid very
large lists when performing the joins. In a next step, the query class:scientist -
is_a - person:* (where - is a proximity operator, which relates to the particular
position in the documents where the facts about entities are stored) yields another
list of word-in-documents pairs, such that:

l2 = {(w, d) | w is a word that starts with the prefix person: ;
d is a list of documents in which woccurs.}

One of those w’s will be a word like person:alexanderflemming, that likely in
fact co-occurs with the word penicillin in some documents. Other w’s will be
words like person:aristotle, that do not co-occur with penicillin. Likewise,
l1 contains numerous persons that co-occur with the word penicillin but do not
necessarily have to be scientist. Hence, the final step in solving the query is a join
of the lists l1 and l2 that uses w as join attribute. The resulting list, finally, is the
desired answer to the semantic query.
The approach used in this thesis is quite similar to the ideas behind Ester. How-
ever, there are some significant differences. First of all, entity recognition in the
text is done differently. Secondly, we regard sentences as documents instead of
whole Wikipedia articles. This improves precision as pointed out in chapter 4. Nev-
ertheless, the most interesting difference is that we aim to reduce the problem even
further. Instead of using prefix search and joins, we show that we can solve this
problem with prefix search only. This can easily be done by writing the facts always

14



3.2 YAGO, LEILA and SOFIE

next to an occurrence of an entity. Unfortunately, this blows up the index size and
therefore Ester uses joins to avoid this phenomenon. The techniques carried out in
chapter 4, however, can be used to significantly reduce the blowup and hence solve
semantic queries with prefix search only without letting the index size explode.

3.2. YAGO, LEILA and SOFIE

As we have already discussed at several points in this document, Yago is an on-
tology and no search engine itself. However, huge parts of its construction are
automated. This means that automatically retrieving facts from full-text, esp. the
English Wikipedia is part of the research done for Yago. Hence, even though the
goal is different, there is a relation between the work concerning the construction of
Yago [Suchanek et al. (2007); Suchanek (2009)] and this thesis.
In his PhD thesis, titled Automated Construction and Growth of a Large Ontology
[Suchanek (2009)], the author presents the concepts behind Yago. Instead of going
into detail too much, let us focus on the overall structure. There are three building
blocks:
Yago is the name of the ontology that is constructed. This is also the part that is

used by this thesis’ work to enrich full-text search with additional semantic
knowledge.

Leila is a tool that extracts information from the text. It uses linguistic analyses
to understand the structure of sentences rather than seeing them as sequence
of words only.

Sofie validates new facts, ensuring that they do not contradict existing facts. This
ensures that only decent facts are added to Yago.

Using the public demo, it is easy to convince oneself that this composition of tools
works pretty well and hence Yago has been chosen as ontology used by Susi.
As discussed in chapter 6, many of the concepts from [Suchanek (2009)] can be
examined in order to improve the entity recognition. However, the construction of
an ontology like Yago is a totally different goal than what this thesis aims to achieve.
First of all the produced output obviously is different and secondly Yago limits itself
on a fixed set of facts that are actually extracted and added to the ontology. For
example there are facts like isA or bornInYear. Other than that, this thesis’ search
engine aims for a lot more arbitrary facts with the flavor of hasSomethingToDoWith
that relates to co-occurrence of words.

3.3. RDF-3X

The most popular query language for Rdf is Sparql [Prud’hommeaux and Seaborne
(2008)]. Since Rdf is the most common format to represent semantic ontologies, a
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Sparql engine can also be regarded as performing semantic search. Rdf-3x [Neu-
mann and Weikum (2008, 2009)] is such a Sparql engine that is able to process even
complex queries on large ontologies in milliseconds. In the following we briefly look
at the basic ideas behind RDF-3X. Those ideas are based on cleverly constructed
indices which might be useful for any kind of search engine.
Recall that Rdf represents facts as subject-predicate-object triples. Sparql sup-
ports conjunctions of triple patterns, which correspond to select-project-join queries
in a relational engine. In order to solve a Sparql query, it is therefore necessary
to support retrieval of triples with zero to two variable attributes and joins between
Rdf triples. So first of all, the internal storage of the triples is an issue. While some
approaches favor a table for each distinct predicate, Rdf-3x uses a single table with
three columns for subject, predicate and object. For that table, Rdf-3x maintains
indices for each possible permutation of subject, predicate and object. This enables
fast look-up of patterns by simple range scans on the correct index whereas the
ordering of the result is already known depending on the index used. Consequently,
joins on any join attribute can also be performed efficiently.
Apart from that, Rdf-3x speeds up complex queries with multiple joins by process-
ing them in a clever way. First of all, statistical histograms help to predict the result
size of a join. This allows ordering joins in a way that they can be performed more
efficiently. Secondly, in [Neumann and Weikum (2009)], the authors present ways
how Rdf-3x speeds up joins even further, using methods of efficient list intersection
that remember gaps in sorted join candidates.
In summary, we can see that Rdf-3x enables very fast search in large ontologies by
processing Sparql queries. But as discussed earlier, this thesis aims for search also
in full text and not only in an ontology. Additionally, Sparql is a query language
that is not as intuitive as a query to a search engine ideally is. Still, some concepts,
like the join heuristics for instance and the general idea of building multiple indices,
are interesting and can probably be useful for semantic search in full text as well.

3.4. DBpedia

DBpedia [Bizer et al. (2009)] is a community effort to extract structured information
from Wikipedia and to make this information available on the Web. It is an ontology
in Rdfs format, that combines many concepts from other ontologies or directly
extracted from Wikipedia. It is very similar to Yago since it uses the class and
type hierarchy from it. Many facts in DBpedia are obtained by extractions from the
info boxes on Wikipedia pages.
There is also an application that uses DBpedia in order to offer a faceted Wikipedia
search [Hahn et al. (2010)]. While this application provides great search on the
relations from the DBpedia ontology with a sophisticated user interface, there are
some notable differences to our work:
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First of all, the search from [Hahn et al. (2010)] does not provide evidence. The
facts are directly taken from the ontology and their origination is no longer known.
Therefore, hits are the entities’ Wikipedia articles and not all pages that contain
a suitable fact. Secondly, semantic search is limited to the relations offered by
the ontology. The only full-text that can be searched is the short abstract in the
beginning of each entity’s Wikipedia article. Additionally this search is limitted
on the abstracts of the entities that are not filtered out by some semantic facet.
Consequently, a query for penicillin faceted by the type scientist returns much
less hits than Susi does for the same query, because all facts where a scientist is
mentioned with penicillin outside of the abstract and all facts in a document other
than the one for the scientist itself, are missed. Finally, the public demo of the
application appears to have response times of tens of seconds for many queries.
This may be acceptable for some use-cases, but is not what we want to focus on.
However, the great user interface is an inspiration for future work.

17



Chapter 3 Related Work

18



4. SUSI

In the previous chapters, we have seen a motivation for semantic search, defined
what exactly we want to achieve and had a look at research that is already present
in this area. This chapter now covers the way that actually solves our problem. We
present a system Susi (Wikipedia Search Using Semantic Index Annotations) that
enables semantic search on a combination of the full-text of the English Wikipedia
and the Yago ontology. We compare possible choices whenever there are multiple
available. Especially, when it comes to supplying entities with semantic facts. we
can distinguish several methods to add the desired information to the search in-
dex. By actually implementing them, we are able to provide concrete numbers for
their application on the full English Wikipedia database. Hence, we can easily and
precisely compare them.
However, at first, we want to recall necessary foundations. Afterward, we discuss
all steps towards a semantic search engine individually. Finally, we reconsider our
example query penicillin scientist and reconstruct how it is actually solved.
This demonstrates the worth of every step presented previously.

4.1. Foundations

This first section briefly recalls the foundations for Susi. We only want to name
the important building blocks behind the underlying search engine and describe the
general idea behind those concepts. For more details please refer to the material in
the references.
First of all, we have a look at the Hyb index that allows super-fast prefix search.
Secondly, we regard WordNet which provides information on English words and
their relation. A physicist, for example, is a scientist, a person, an organism and
more. The effort put into the creation of WordNet is crucial for Susi. This section
finally ends with a short description of CompleteSearch, a fully operational search
engine that features the Hyb index and is the engine behind Susi.

4.1.1. Prefix Search and the HYB Index

The Hyb index [Bast and Weber (2006)] is an index for search engines that allows
fast prefix search. Thus, it enables auto-completion search as known from various
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applications. But prefix search is also important for other features. For exam-
ple, synonyms can be supported. As an example consider the words novice and
beginner. Instead of simply writing the words themselves, one can write some-
thing like syngrp1:novice and syngrp1:beginner to the index. A prefix-query for
syngrp1:* should now find occurrences of any of the words. Likewise, for semantic
search it is very useful to have a powerful tool like prefix search. E. g., we have seen
in chapter 3 that Ester is build around two operations, one of them being prefix
search. On top of that, Susi even reduces semantic search to prefix search only.

However, a big challenge for prefix search is that multiple words match a query and
it is therefore required to merge the document list of all those words in order to pro-
vide the result. The Hyb index stores precomputed doc lists in a very clever way.
Just like an encyclopedia may be split across multiple books, the Hyb index divides
the possible prefixes in multiple blocks and stores each of them independently. De-
pending on the query, multiple blocks can be read and united, or the doc-lists read
can be filtered so that they fit a more precise query. Note that sufficiently small
block sizes will lead to negligible costs for filtering.

Block List of word - document occurrences
ADD - Word apple add apple aristotle angel
AZZ Document 1 47 51 62 120
B - Word boy band blue boy back big bang big
BYG Document 2 30 30 30 47 402 507 507

Table 4.1.: HYB Example

Table 4.1 illustrates this principle of dividing the index into several block. Note
that this is only an example and there are in fact numerical IDs stored for words
and documents for obvious efficiency reasons. The division into blocks overcomes
the problem that storing all those precomputed lists leads to a much larger index.
In [Bast and Weber (2006)], the authors mathematically show that the Hyb index
does not use more space than a conventional inverted index. Hence, the Hyb index
is a very powerful way to enable prefix search in an efficient way.

4.1.2. WordNet

WordNet [Miller (1994)] is a semantic lexicon for the English language developed
at the Cognitive Science Laboratory of Princeton University. It associates words to
certain classes and provides relations such as subClassOf. This relation is exactly
what we need for our semantic search, since it contains the fact that a scientist also is
a person. Conceptually, the subClassOf relation in WordNet spans a directed acyclic
graph with a single root node called entity. Although we only make indirect use of
WordNet through Yago, most of the interesting facts for our work are actually
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inherited from WordNet which therefore deserves to be mentioned here in addition
to Yago.

4.1.3. CompleteSearch

CompleteSearch [Bast and Weber (2007)] is a fully functional search engine that
supports a variety of features. It uses the Hyb index which has been discussed
previously and implements all necessary components to allow searching by end-
users. There are multiple research projects (e.g. [Celikik and Bast (2009)]) in
different areas of search engines that blend into CompleteSearch. The same thing
is true for Susi. CompleteSearch’s modular architecture allows substituting certain
components and keeping the rest. Hence, we can provide a special index for the
English Wikipedia (plus some minor modifications to the user interface) that will
enable semantic search, while no changes are necessary to the basic operations of
the search engine itself.

4.2. Enabling Semantic Wikipedia Search

As discussed above, Susi is build into the CompleteSearch engine. Actually, the
semantic Wikipedia is nothing else but a database built from a document collection
to search on. Semantic information is added during construction and treated as if it
was part of the original documents. For CompleteSearch, such a database consists
of three parts. The search index, the vocabulary and a structured version of the
original text that allows displaying excerpts for all hits. Since the vocabulary can
directly be found in the index, the interesting parts are the construction of the file
for the excerpts and especially of the search index itself.

4.2.1. Index Construction

Recall the Hyb index that has been discussed in the section on necessary founda-
tions. Although the Hyb index structures its data into several blocks, the smallest
units of information remain postings. Such a posting is basically a word-in-document
pair, while CompleteSearch has additional support for scores and positions. So while
the actual index consists of multiple blocks, the input to index construction is just
a set of postings. In the following, we can imagine the search index as a set of lines.

Note that in practice, word-ids are used instead of the actual words and the input
is passed in binary format. This is absolutely crucial to performance but for the
sake of all arguments and explanations we can always imagine the readable format
from table 4.2. For Susi, we want to see each sentence (or row in a list or table)
as document. This leads to the following behavior of the search engine. A hit for
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word document score position
this 1 0 1

example 1 0 2
is 1 0 3

simplified 1 0 4
Table 4.2.: The index as set of postings.

all query words is a sentence that contains all of this words, supposing this is a fact
in the Wikipedia that the query attempts to find. Actually, using sentences is just
a very basic heuristic for determining the scope of facts. For future work we might
consider trying to find better units by linguistic analysis. See chapter 6 for further
notice.

Positions momentarily only play a minor role and scores are currently even unused.
However, they may be inferred soon to realize new features.

4.2.2. Enabling Excerpts

In addition to the index, we also need to produce a file that contains the necessary
information for providing excerpts for each hit. For the basic search features, this is
quite easy. We simply write a line with <doc-Id> <TAB> u:Wikipedia URL <TAB>
t:<title> <TAB> H:<original text> into a file. The CompleteSearch engine is
then able displays excerpts that belong to a hit in a nice format, provide a link to
the corresponding Wikipedia article and also highlights the query words.

However, Susi contains artificial words that contain the semantic additions. High-
lighting those requires special effort, because the artificial words should not be vis-
ible and the corresponding entities should be highlighted instead. Fortunately, the
CompleteSearch excerpt generator already supports special rules for artificial words.
This is best explained with an example. Consider the string ^^A^^B^^C^^^D. The
letters A, B and C (preceded by ^^) now will not be visible in the excerpts. It is D
(preceded by ^^^), that is displayed in their place. If a query now contains any of
the first characters, the D will be highlighted instead by the excerpt generator. So
for Susi, we can simply hide our artificial words for the semantics and highlight the
corresponding entity instead.

The following screen-shot is taken from the current version of Susi. It shows a query
for the entity Alistar Sinclair that is supposed to co-occur with the words geometric
and algorithm.
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Figure 4.1.: Highlighting Alistair Sinclair, geometric and algorithm in the excerpts.

Not only does figure 4.1 demonstrate how well the highlighting of words like “his”
works, it also shows that Susi properly identifies entities. As a fun fact, we also get
to see that even Wikipedia authors seem to like to copy from Wikipedia.

4.2.3. Implementation

Both, the index and the file with the excerpt information, are constructed while
parsing the Wikipedia dump. The process takes several files as input which are
constructed beforehand. For example, we use a redirect map that maps links to
redirecting Wikipedia pages to a distinct entity name for every entity, a list of
pronouns that are words which will reference some entity and many more. Apart
from the information for parsing, the input also contains the data extracted from
Yago. The format of this data is discussed later in this section.

The software that builds index and excerpts file consists of three classes. The struc-
ture is very simple but still applies a clear separation of concerns:
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Figure 4.2.: The Semantic Wikipedia Parser

Figure 4.2 illustrates this concept. The class SemanticWikipediaParser (SWP) han-
dles parsing the markup and recognizes, words, sections, links (to entities), tables,
math and more. According to what is found the SemanticWikipediaParser calls
methods of the EntityAwareWriter (EAW).
Deciding what is actually written to the output lies in the responsibility of the
EntityAwareWriter. It provides methods that handle entity occurrences through
links, redirects, entities with renaming, beginnings of new documents, new sentences
or new sections to give some examples. The EAW then reacts accordingly. Addi-
tionally, it also decides on the format of the things written to the index and the
excerpts file. Just think of the rules for highlighting words in the text that reference
an entity in place of it. However, the exact things to write for some words depend
on the context. For example, reacting on the word “he” will be different in the
beginning of a document about tomatoes where no person has been mentioned yet
and in a document about Albert Einstein, where the pronouns will likely reference
a person. The word “apple” will require different things written to the index if it
is found in a document Apple Computers or an article on Isaac Newton where an
apple falling from a tree is mentioned.
This context information is stored in the EntityRepository (ER). The EntityRepos-
itory knows entities that previously occurred in the same section, the document
entity, the last entity that occurred at any point in time and entities that relate to
“active” (the scope depends on settings passed to the parser call) section headings.
Whenever the EAW is supposed to write some word, it can query the EntityRepos-
itory to determine if the word might refer to an entity and which entity this would
be.

4.3. Wikipedia Markup Parsing

Building a search index for the English Wikipedia, obviously requires access to the
content of the Wikipedia in a proper format. Fortunately, dumps are being made
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and provided for download on a regular basis. These dumps are available in XML
format that sticks to a reasonably simple XSD1. The content of every Wikipedia
page can be found in a single XML tag and formatted directly in Wikipedia markup.
Hence, parsing the Wikipedia dump consist of two steps: Parsing the XML for the
page tags and subsequently parsing the markup of each page. While there is nothing
special to parsing the Wikipedia XML, maybe except for the fact that using a Sax
strategy is absolutely mandatory due to the sheer size of the data, parsing the
markup is special and therefore discussed in the following.
There are some challenges to parsing the Wikipedia markup:

1. Wikipedia accepts messy pages. An error in the markup will result in some
formatting issues or a link not working correctly but the page will still be
displayed in general. Sometimes, minor mistakes will not even have an effect
at all. Consequently, there are many pages with flawed markup in the dump
and a parser may not rely on opening tags to eventually get closed and so on.

2. Wikipedia is nice to its writer. There are many ways of doing the same thing.
For example, there are special templates for tables that are usually used, but
HTML tables do work as well. Thus, a perfect parser would have to take all
possibilities into account.

Due to the challenges listed above, the parser written for Susi is not fully mature,
yet. However, it properly processes at least almost everything. The remaining
difficulties will have to be addressed in the future. The parser follows a very simple
principle: Avoid going through the same passage more than once. It usually reacts
to the start of some construct and behaves accordingly. There are lots of possible
elements that can be found. A complete list is available online2. We will not discuss
all of them here but examine a few examples instead:
Internal Links may be the most important construct to parse. These internal links

point to some other Wikipedia page and thus to the entity that is described
on that page. Internal links are the easiest and yet most reliable way to rec-
ognize entities. Usually they consist of the entity title in double brackets, e.g.
[[Albert Einstein]] but variations are possible. [[(Albert) Einstein]]
or [[Albert Einstein | That physics guy]] can be used to reference the
same entity but display only “Einstein” or “That physics guy” instead. These
two were just chosen as example. More similar variations are possible and a
parser has to react accordingly.

Sections and Section Headlines Sections and their headlines have to be found be-
cause they are important for entity recognition. See the section on entity
recognition for further details. Apart from that, we can supply the parser with
a list of section headlines that indicate sections that will always be skipped
during parsing. One example is “References” which are usually ignored.

1http://www.mediawiki.org/xml/export-0.4.xsd
2http://en.wikipedia.org/wiki/Help:Wiki_markup and linked documents
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Math and similar Structures are ignored altogether. Usually they do not contain
any meaningful text that could be of use for Susi.

Wikipedia Templates are usually skipped since there are so many of them and
even user defined ones are possible. However, some really important ones, like
tables have to be parsed in order not to lose valuable information.

While those examples and more cases are already implemented in the parser, there
are still others to be added in the future. Those, that might have been of use at
some point already, are listed in chapter 6.

4.4. Entity Recognition

Semantic Search is about finding facts, facts about entities. So if we are looking at a
system like Susi, where semantic search is performed on a combination of ontologies
and full-text, entity recognition in the full-text is obviously necessary and even a
key aspect. In general, this is a really challenging problem and solutions usually
involve linguistic analysis of the text (done by Sophie [Suchanek (2009)] which is
supposed to find facts for Yago) or analysis based on statistical co-occurrence (has
been tried for Ester [Bast et al. (2007)]).
However, entity recognition is much easier on Wikipedia pages. At least if the
pages live up to Wikipedia’s standards, the first occurrence of any entity should
always be linked to the page describing that entity. This allows for simple, yet
excellently precise heuristics that abuse the structure of Wikipedia pages. The
entity recognition performed for Susi follows exactly this idea.
• First of all, direct links to Wikipedia pages are always occurrences of the linked

entities. Technically we have to take redirecting Wikipedia pages into account
(e.g. the page Einstein redirects to Albert_Einstein), but a map with all
redirecting pages is easily constructed by parsing the Wikipedia dump once.
• Secondly, further occurrences of an entity usually are not linked anymore.

Additionally, those occurrences do not necessarily match the linked entity en-
tirely. The most common example evolves around persons that are mentioned
by their last name only. Consider a passage like: “Einstein thought that...”. If
the entity Albert_Einstein has just been mentioned, It is clear that Einstein
in fact refers to that entity.
• Finally, there are expressions referring to another entity. While those ex-

pressions are called anaphora in linguistics and their strict definition depends
on theories, they are again best understood by some example. Again, the
Wikipedia on Albert Einstein contains the following excerpt: “He received the
1921 Nobel Prize in Physics for his services to Theoretical Physic...”. Both, he
and his do reference the entity. Anaphora handled by Susi are exactly those
pronouns.
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Now that we have seen the different kinds of words that may represent entity oc-
currences, we still have to associate them with the correct entities whenever we
discover these words during parsing. Obviously, the correct choice always depends
on the context of the current page. Therefore, we keep track of several entities when
building the index for Susi:

• Entities inside the current section. This case is quite intuitive. If an entity has
just been mentioned, it is a possible match. This can be seen in the following
sentence: Although Einstein had early speech difficulties, he was a top student
in elementary school. Obviously, the word he references the Einstein who has
just recently been mentioned. Therefore we keep all entity occurrences in a
map which has all words from their title as separate keys and the entity as
value.

• The page entity. A Wikipedia page is always dedicated to one certain entity.
This entity is always referenced by other expressions throughout the whole
document.

• Entities referenced by section headlines. Just like the document entity, an
entity in the headline of the current section can also be seen as present ev-
erywhere in the section. While this feature has been implemented for Susi,
practice has shown that it is not really helpful and therefore it is currently de-
activated, or to be precise, it has been set to a level where only the document
entity is handled in a special way.

These cases fill the map of currently “near” entities. This map is cleared whenever
new sections are discovered (the document entity remains in the map in the case)
or if a new document starts. Additionally we always remember the last entity that
occurred separately, because it may be more likely that this particular entity is
referenced. The information can be used to associate word occurrences with entities
and thus recognize entities in the text. In a nutshell, we can describe the strategy
used by Susi for this association by the following algorithm:

Algorithm 1. For every word occurrence, check if it should be treated as anaphora.
For pronouns assume that he/his/him/she/her/they and so on, will always reference
persons and it/its and so on will always reference non-person entities. Decide if the
document entity is suited. Alternatively check if the last entity fits the type of the
pronoun. For others words that exceed a minimum word length, check if any recent
entity contains that word.

This heuristic works surprisingly well, but there still are some problems that would
require more sophisticated entity recognition strategies. Those are discussed in
chapter 6 in the section of future work. Also chapter 5 deals with the evaluation
of Susi and examines which failures can be blamed on entity recognition. In fact,
there are not many failures although such a simple heuristic is used, so it works
surprisingly well.
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4.5. Incorporation of YAGO

This chapter discusses the main challenge during the development of Susi, i.e. asso-
ciating entities with their semantic classes. For example, we want our search to know
that Albert Einstein is a physicist and thus return occurrences of Albert Einstein
as hits of queries for physicists. As we have discussed in previous chapters, Yago
contains this kind of knowledge. It associates Wikipedia pages, and hence entities,
with their semantic classes. Regarding these facts from Yago, we distinguish two
categories:

Definition 1. Let Classes denote all semantic classes from Yago (which inherits
them from WordNet) that some entity belongs to. They may range from interesting,
specific ones like “scientist” to very generic ones like “entity”, which is a class that
every entity belongs to trivially.

However, these classes can play a special role for an entity:

Definition 2. Leaves is a term we use to describe special facts. Consider the fact
that Albert Einstein is a physicist, again. This fact is directly contained in Yago.
However, being a physicist implies several other things. We know that an entity
that is a physicist also has to be a scientist, a person and so on. A leaf is a class
that is directly associated with the entity and not implied by some other class.

Yago provides facts about the leaves in a designated file that directly associates
them with entities. Therefore it is easy to use this kind of knowledge, although we
have to consider special cases where Yago lists a leaf for some entity, that is already
implied by another one. We will address this issue later on.
Concerning the implied classes, on the other hand, Yago provides a subclass relation
called subClassOf . This relation is crucial for the ideas discussed in this section.
We therefore introduce operators that should be intuitive and increase readability:

Definition 3. We write “⊂” (read: “subclass Of”) when the following holds:
(a ⊂ b)⇔ (a, b) ∈ subClassOf . For example we can write scientist ⊂ person.

Obviously, a subclass relation should be transitive. Accordingly, what we called
implied facts earlier, actually means that we require the set of an entity’s classes to
be closed under the subclass relation.

Definition 4. We write “⊂c” to denote that one class is a subclass of another,
regardless of if they directly are in relation. Thus, we can use the following recursive
definition:
(a ⊂c b) ⇔ ∃a′.(a ⊂ a′) ∧ (a′ ⊂c b). This allows writing something like scientst ⊂c

entity.

Technically we can easily construct a closed set of an entity’s classes by the following
algorithm:
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Algorithm 2. Start with the set of leaves for that entity which is directly available
from Yago. Continuously add all direct parent classes to the set until nothing new
is added.

In practice, we use a more complicated algorithm because we require the result to
be of a very special format. This format can be used to annotate entities with their
semantic classes in an efficient way. The next section presents how this is done in
detail.

4.6. Entity Annotations

In the previous section we have seen what kinds of facts are supposed to be extracted
from YAGO and have to be made available for search queries. Somehow those classes
need to be associated with the entities they describe and the occurrences of those
entities in the text. This section presents different ways of doing this and explains
which approach has been chosen for Susi.

4.6.1. Naive Annotation

The simplest way is writing all facts next to an entity. If we imagine that every
occurrence of a scientist in the text is annotated with the word scientist, a query
for that word, will find all occurrences of Albert Einstein amongst others. If we
look for a simple way to find out which exact scientist is found in the hit for our
query, we can just add the entities’ name after each fact. This means we write a
word scientist:alberteinstein instead. A prefix-query scientist:* will conse-
quently deliver the entities that are scientists as last part of the query completions
with hits.
This simple idea works perfectly fine, but unfortunately it requires lots of additional
words to be written to the index. This causes a blow-up of the index that is not
acceptable for really large document collections like the whole English Wikipedia
(concrete numbers are presented later in this section). Thus, more clever ways are
required to achieve the same thing with less space consumption.

4.6.2. ESTER style

The research work for Ester [Bast et al. (2007)] features a neat idea to provide
the semantic information with very low space consumption. As mentioned in the
chapter on related work, Ester writes all the facts available for an entity only
once in the document describing that entity. Entity occurrences somewhere in the
text are annotated with a single join attribute instead. Queries containing semantic
categories like penicillin scientist, then are processed using joins.
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This strategy is really space efficient but the additional join can be a costly operation
that may slow down the query processing times.

4.6.3. Path-Style Annotations

The way of annotating entities with semantic facts that is actually used in the index
of Susi is yet different and supposed to be superior. The idea is based on the
observation that many facts implicitly belong to an entity that is of a certain type.
Just think of the entity Albert Einstein who is, amongst others, a physicist. This
single fact implies that he also is a scientist, a person, an organism and many other
things. A great example is a vegetarian which is implicitly all of: eater, consumer,
user, person, organism, living thing, whole, object, physical entity, entity. Obviously,
a single semantic class can carry lots of information about an entity.

In Yago, the subclass relation spans a directly acyclic graph. However, this graph
is very tree-like since the only violation of the tree properties is that there are classes
that have two or more independent super-classes. As example, consider the class
woman. A woman is both, an adult and a female. However, the classes female
and adult are no subclasses of each other. For the sake of the following arguments,
imagine the subclass relation to span a “broken” tree. Apart from the fact that some
nodes have more than one parent, the model of a tree fits well. All types are really
subclasses of some other type, except for entity. This is intended by WordNet but
due to bugs in Yago, some type entries seem to be missing in the current version
(e.g. the type health professional). Their subclasses (e.g. doctor) may end up
without a parent. In this case, we simply add an entry to the subClassOf relation
that makes the lonely facts direct subclasses of the root fact entity. This design
decision leads to the following fact:

Fact 1. The class entity is the only class that is no subclass of some other class.
Thus, all other classes have super-classes and the chains eventually end at entity.

We can make some statements on the subclass tree. Let a and b be classes and thus
nodes in the tree:

• a is a parent of b iff b ⊂ a, respectively b is a child of a.

• a is an ancestor of b iff b ⊂c a, respectively b is a descendant of a.

The following figure now shows a tiny excerpt of the whole subclass-tree:

30



4.6 Entity Annotations

Figure 4.3.: YAGO Paths Example

The idea of path-style entity annotations is to write all paths from the root to the
leaves for each class an entity belongs to. Consequently, it is no longer necessary
to write all those facts that are implied by the fact as additional words. Con-
sider figure 4.1 and let us say we recognize an entity (e.g. Bacillus Thuringien-
sis to pick one at random that is not associated with a subclass of organism,
like persons or animals are) that is an organism. We now write the additional
word :e:entity:physicalentity:object:whole:livingthing:organism:bacillusthuringiensis3 in-
stead of all those artificial words like organism:bacillusthuringiensis or livingth-
ing:bacillusthuringiensis and so on. Examples involving persons lead to even longer
paths so that it is hard to actually draw the tree for them. Assume we discover an
occurrence of the entity Albert Einstein during parsing. If we now want to cover
the fact that he is a physicist, we can write something like this to the index:

3The prefix :e: is only there for technical reasons.
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word doc score pos
:e:entity:physicalentity:object:whole:livingthing:organism:person:scientist:physicist:alberteinstein: 30 0 1
Albert 30 0 1
Einstein 30 0 1

For now, ignore the prefix :e: of the long word which is only there for technical
reason. More interestingly, we can now use prefix search to find this word, that ends
with alberteinstein, as a completion. Doing this we are free to choose which of the
contained types we are looking for. The word is a viable completion for the queries
:e:entity:* or :e:entity:physicalentity:object:whole:livingthing:organism:person:*
and so on. The viability of this idea, in the sense that it really does save a significant
amount of space compared to the naive way, has been confirmed experimentally:

Measurement Leavesa Paths Facts / Naive Annotations
number of (entity, word) pairs 4,059,857 4,016,440b 16,281,766

number of entities 2,563,739 2,549,651c 2,397,667d

avg. facts per entity 1.58 1.58 6.79
median facts per entity 1 1 6
max facts per entity 23 21e 51
index blowup factorf n.A.g 1.19 4.16

aWe use the term leaf to denote an entities fact that has no subclasses that can also be associated
with that entity.

bThis number can be less than the number of leaves due to the removal of redundant facts.
cSome entities are merged due to case insensitivity. See future work on plans to fix this.
dThe number of entities for the naive style is lower since entities that can only be associated with
the generic fact entity are eliminated here, while they may or may not be contained in the
paths. This does not matter during index construction, because the same thing is written to
the index for entities without facts from YAGO or entities with the trivial fact only.

eThis number can be less than the number of leaves due to the removal of redundant facts.
fFactor of size increase compared to not annotating entities at all. Compared number of index
items instead of index file size.

gBuilding an index with the leaves only makes no sense, since we are no longer able process queries
properly.

Table 4.3.: Space Consumption of Entity Annotations

Table 4.2 compares the path-style annotations to the naive way. Note, that there are
actually less paths per entity than there are leaves. This is related to the fact, that
leaves are taken from Yago which directly derives them from Wikipedia categories.
This may lead to redundancy. The most common example is probably the class
person which is present as leaf for many entities, while it is implied by the class that
reflects the entity’s occupation.

Since we now have to write much less words next to each entity compared to the
naive way, the index blowup by adding the semantic facts is negligible. On top of
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that, the HYB index enables very fast queries. Query processing times constitute
one of the aspects that are evaluated in chapter 5.
Now that we have seen that this idea can effectively decrease the size of the index,
we want to confirm that this strategy delivers correct results. Therefore we need to
make the things, we have seen in the previous illustration, formal.

Definition 5. The operator closure(class) denotes the smallest set that exhibits
deductive closure under the subclass relation and contains class. This is simply the
class itself and all implied classes. Formally this means that:
closure(c) := {c} ∪ {x | c ⊂c x)}.
For example it holds that closure(scientist) = {person, organism, . . . , entity}.

Obviously, this definition can be used to characterize the set of classes of an entity
e by building the union over all closures of its leaves.

Definition 6. The classes of an entity e correspond to the union of the closed sets
containing its leaves:
classes(e) = ⋃

c ∈ leaves(e) closure(c).
For example classes(alberteinstein) = {vegetarian, scientist, person, . . . , entity}.

This set of classes should now be represented by the long words we write to the
index. These words correspond to paths in the tree that is spanned by the subclass
relation. Thus, we also use the term path to describe them.

Definition 7. A path is a word of the following form: It starts at the univer-
sal class entity and reaches to an arbitrary class that is some entity’s leaf. We
write a path as sequence of classes separated by colons. An example path could be
entity:physicalentity:object:whole:livingthing:organism:person.

The operator paths(class), denotes all possible paths from the universal root fact
entity to the class that serves as argument for the operator. There may be multiple
paths to a single class, because our tree does not really fulfill the tree properties
and there are those few counter examples where a node has more than one parent.
Formally we want that:

paths(c) = {c1 : c2 : · · · : cn | cn = c ∧ c1 = entity ∧
∀i, j < n.(i + 1 = j)⇒ (cj ⊂, ci)}

As the classes of a path p, we simply collect all classes that occur along it. We write
classes(p) = {ci | c1 : c2 : · · · : cn = p}.

The previous definitions can be used to show that the path-style annotations deliver
the correct result.

Theorem 1. The path-style annotations deliver the correct result.
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The desired annotations for an entity e are exactly all of its classes. According
to definition 6, the set of those classes corresponds to the union of all closed sets
containing a leaf of e. The path annotations written for e are exactly all paths
leading to leaves of the entity. Thus, we can show the following lemma instead, to
proof correctness of the theorem:

Lemma 1. Closure(c) = classes(paths(c)). The set of classes found along all paths
to a class c is exactly the smallest set containing c that is closed under the subclass
relation (closure(c)).

Proof. We show that closure(c) = classes(paths(c)) by showing containment be-
tween the two sets in both directions:

closure(c) ⊆ classes(paths(c))

The proof for this direction follows directly from the definition of a path. Consider
an arbitrary path p = c1 : c2 : · · · : cn. The definition enforces that ∀i . j = i + 1⇒
cj ⊂ ci. Therefore ∀i . cn ⊂c ci and hence ∀i . ci ∈ closure(cn). Consequently,
closure(c) ⊆ classes(paths(c)).

closure(c) ⊇ classes(paths(c))

The other direction is not as obvious. We need to recall fact 1 which states that entity
is the universal super-class and all other classes are subclasses of entity. Now consider
and arbitrary class c and the set of facts closure(c). By definition 5, all classes in
this set are either c itself or super-classes of c. ∀ci ∈ closure(c) . ci = c ∨ c ⊂c ci.
Therefore, every class ci is an ancestor of c in the tree. Fact 1 now ensures that every
path from c to some ci can be continued to the root class entity, since entity has to be
an ancestor of ci and hence such a path exists. Since the definition of paths(c) collects
all those possible paths between entity and c and classes(path) collects all classes
that occur along a path, we can be sure that closure(c) ⊇ classes(paths(c)).

Improvements

We have shown that using all paths according to definition 7 delivers the correct
result. However, our goal is to minimize the index-blowup caused by the entity
annotations. Maintaining correctness is a necessity that has to be kept in mind, but
not the ultimate goal. While we have shown that the paths neither lose real facts
nor add wrong ones, we have not shown that they produce minimal overhead. In
fact, the paths are not minimal at all. We will see that we can safely eliminate some
of the paths and still retain the same expressive power. Those paths, that can be
eliminated, arise from the following situation in the tree:

Looking at figure 4.2 and the paths from the root to the node labeled G, we see that
these double diamond patterns may lead to paths that do not contain any new class.
Four paths can be collected:
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Figure 4.4.: Structure causing unnecessary paths

1. A:B:D:E:G

2. A:C:D:E:G

3. A:B:D:F:G

4. A:C:D:F:G

We see that while four paths are possible, the paths from 1. and 4. or from 2. and
3. alternatively already contain all classes. At first sight, it looks like one of the
pairs might suffice for annotating an entity that as G as one of its leaves. However,
we still want to be able to find all classes by prefix search and using one of the pairs
of paths only, leads to the following problem:
Let us consider the pair of the paths from 1. and 4. (the argument is just as valid
for the other pair). If an entity, that has a leaf G, was now annotated with the words
A:B:D:E:G:<entity> and A:C:D:F:G:<entity>,we would have to query for E with
the prefix query A:B:D:E:* and a prefix query with A:C:D:E:* could not be used.
Unfortunately, this is hard to decide when all we know is that we want to query for
E. The two possibilities A:B:D:E:* and A:C:D:E:* appear to be no equally suited.
Hence, we need some kind of agreement which paths to use for queries. For the
current version of Susi, we chose the following heuristic:

Algorithm 3. Always query with the first path towards a class. Being first means
that we apply the following ordering: Shorter paths take precedence over longer paths
and equally long paths are ordered lexicographically. All paths that do not add any
new class, can be dropped and hence can we reduce the number of paths without
loosing any power of the search.
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for all c ∈ Classes do
sort paths(c) short paths first, sort lexicographically on same length
seen← {} (HashSet of Strings)
newPaths← {}
for all p ∈ paths do

foundNewClass← false
classes← classes(p)
for all e ∈ classes do
if e 6∈ seen then

seen← seen ∪ {e}
foundNewClass← true

end if
end for
if foundNewClass = true then

newPaths← newPaths ∪ {p}
end if
paths(c)← newPaths

end for
end for

Unfortunately, this heuristic does not necessarily lead to an ideally decreased index
size. In fact, for the example above we can only eliminate one of the four paths and
not two. This leaves still room for improvements and is also discussed in chapter 6
when we have a look at future work. However, for now we successfully eliminate
some facts and we can safely claim that the path-style annotations always decrease
the index size compared to naive annotations.

Lemma 2. Using the path-style annotations with this heuristic for improvement,
the index is always smaller than it is with naive annotations.

Note 1. Note that the measurements from table 4.3 show that it is in fact significantly
smaller (the blowup compared to no annotations drops from a factor of 4.16 to
1.15) and that the improvements discussed here only contribute slightly to that
observation. The most benefits are obtained from the idea of using paths itself and
caused by the fact that the graph spanned by the subclass relation is very tree-like.
For a real tree, the path annotations would be even better and no improvements
were necessary.

Proof. Consider any class other than entity (for the class entity the paths do
trivially lead to the same result as the naive annotations). In this case, the first
path will definitely contain multiple classes. I.e. entity and the class itself and
possibly more. All further paths do add at least one new class. Since the naive way
needs a posting for each class, we ca be sure that we need strictly less postings for
all entities that do have leaves other than entity and exactly the same amount (1)
for those that only belong to the class entity.
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Another improvement we make, is the elimination of unnecessary leaves. It may
happen that Yago associates an entity with multiple leaves, whereas one leave is
actually already implied by another one. For that purpose we post-process the final
map that associates entities with paths. In that map, we look at each entity’s paths
and eliminate those that are only a prefix of some other path. This is very simple
but perfectly works for filtering out paths caused by unnecessary leaves.

4.7. Realization of User Queries

The last section has introduced very long words to represent paths in the tree of
semantic classes. We have seen that prefix search can be used to query the index
with those words efficiently. However, the queries were extremely long. Anyone who
was about to use Susi, would never want to type those extraordinarily long words
for simple queries like our running example, penicillin scientist. On top of
that, one would also have to know the correct prefixes and thus the paths in the
tree. For queries for the class scientist, a path with no less than eight classes is
necessary. This is not acceptable for any user.
Fortunately, CompleteSearch already has a powerful user-interface that is easily
extended for Susi. We add so-called translations for classes that provide the user-
interface with the corresponding paths. Therefore we add a special document to
the index that contains words with a prefix :t:. For scientist, for instance, we add
a word of the form :t:scientist::e:...:person:scientist. Now, the Com-
pleteSearch user interface can internally send additional queries for words with the
:t: prefix. The returned completions then relate to possible paths.
At that point we distinguish two cases:

1. The :t: query has exactly one completion and hence a unique translation.
For example, the query scientist only has the one meaning that we expect
and hence the corresponding path the unique translation.

2. The :t: query has more than one completion / translation. The query person
leads to that case, since person can mean the organism person that we expect
but also refers to the grammatical category called person.

In the first case, the user-interface immediately replaces the word in the query by
its translation. Hence, it transforms it into a semantic query and directly displays
the result for the translated query. In the second case, the user-interface lets the
user choose a suitable translation. Therefore it displays possible translations in a
dedicated box and translations can be chosen by clicking them. For the displayed
value in the box, it appends the last class on the path before the class itself, hence
displaying entries like person, the ORGANISM.
This concept works well for the :t: queries that are supposed to find translations, but
comes in just as handy for the real semantic queries. Since all paths annotating en-
tities, do end with the entity name itself (:e:...:scientist:alberteinstein:),
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Figure 4.5.: Refinements by Instance

the same principle can be used to refine queries by instance, i.e. by actual enti-
ties. Consequently, Susi is able to provide the box from figure 4.5 for the query
penicillin scientist.

Clicking on such a refinement will limit the displayed hits to those that are evidence
for facts concerning this concrete entity.

4.8. Software Architecture

This section summarizes how Susi is built into the CompleteSearch search engine
and what technology is used. The whole chain described here is defined and auto-
mated in a Makefile4. While all steps can be performed individually, they can also
be processed together and required artifacts are created whenever they are needed.
Building Susi follows this overall steps:
• Generate the redirect map by parsing the Wikipedia dump once. Done by a

simple SAX parser that fulfills exactly this purpose.
• Extract the facts from Yago and construct the paths according to the idea of

the subclass tree as discussed above. This is done in three steps by scripts:

– Extract the entity → leaves association from Yago into a map.

– Construct the paths by starting with the root class entity and contin-
uously appending all direct subclasses of the rightmost element to the
right hand side. Also do improvements as discussed above.

– Replace each leave in the entity → leaves map by all paths leading to
that class. Again do improvements as discussed above.

• Now parse the Wikipedia dump and write the postings for the index and the
file for the excerpts.
• Convert the postings for the index to binary format, sort them and generate

the vocabulary, the Hyb index and compress the file for the excerpts.
4http://www.gnu.org/software/make/manual/make.html

38



4.9 Exemplary Execution of a Query

• Launch the CompleteSearch server with suitable arguments and pass the index,
the vocabulary and the excerpts file as data base.

Independent from this chain, there are several unit tests, generators for test data
and the evaluation framework discussed in chapter 5. Of course, the CompleteSearch
engine consists of many components itself but these are not discussed here.

4.9. Exemplary Execution of a Query

Now that we have discussed every aspect of Susi separately, we should be able to
understand the whole way from the content of the text and our query to the final
result. Recall the example query penicillin scientist once more. Additionally,
we want to use the text from the very beginning of this document while we simplify
it even further to save some writing in the following.

Alexander Fleming was Scottish. He discovered penicillin.

Figure 4.6.: Fictional Text Excerpt

For the text presented in figure 4.6, the postings in the index will look somehow5

like this:

word doc score pos
:e:entity:...:scientist:biologist:alexanderfleming 12 0 1
:e:entity:alexanderfleming: 12 0 1
alexander 12 0 1
fleming 12 0 1
was 12 0 1
scottish 12 0 1
:e:entity:...:scientist:biologist:alexanderfleming 13 0 2
:e:entity:alexanderfleming: 13 0 2
he 13 0 2
discovered 13 0 2
penicillin 13 0 2

Table 4.4.: Example Index Content

Now let us examine what happens when the query penicillin scientist is typed
into the user-interface. First of all the user-interface will try to find translations for

5In fact, the entity Alexander Fleming is associated with more classes. However, we leave them
out to keep things readable. Also penicillin will most likely be associated with a number of
semantic classes, such as “drug”.
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the word scientist. This will succeed and it will internally replace scientist by the
prefix :e:entity:...:scientist:* , thus transforming it into a semantic query.

When the CompleteSearch engine processes this query it will find the word penicillin
in a list of documents. This list will include document 13 because of the posting
that is contained in table 4.4. Secondly, it will look for the prefix :e:entity:
...:scientist:* which will return a number of completions - each with a list
of documents where this particular completion is found. One of them should be
:e:entity:...:scientist:biologist:alexanderfleming with a doc-list includ-
ing document 13, too. Now, the doc lists for both query words are intersected,
eliminating occurrences of scientists in documents that have nothing to do with
penicillin and vice versa.

Thus, CompleteSearch will be able to tell that the completion :e:entity:
...:scientist:biologist:alexanderfleming leads to a hit and that this hit is
found in document 13. Hence, it is able to display Alexander Fleming, the biologist
as a possible refinement by instance and to present an excerpt for our document
13 as hit. The internal representation of the excerpt of document 13, will contain
the string ^^:e:entity:...:alexanderfleming^^^He discovered penicillin.
Consequently, the completion will match the hidden part and the word he is high-
lighted instead. The word penicillin matches right away and can be highlighted
easily.

Figure 4.7.: Result returned for the query penicillin scientist

Like this, Susi enables CompleteSearch to present Alexander Fleming as completion
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and thus answer to the query. Additionally, the excerpt is presented as evidence and
the words that made the query match are highlighted as can bee see in figure 4.7.
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The evaluation of Susi has two different goals. First of all, we want to demonstrate
the performance of Susi with respect to both, quality and efficiency. While it is
always nice to present decent results, the current state of Susi makes the second goal
much more important: We can examine any discovered deficits in detail, find out
what causes them and react accordingly by fixing minor bugs or revising concepts
that do not seem to work out as well as intended.

5.1. Quality

Examining the quality of a search engine usually evolves around the question: Did
the expected documents get returned? Although Susi delivers something similar in
form of the evidence provided for each fact, we rather want to answer the question:
Did the expected entities get returned? This makes sense, because the evidence will
always be the passage of the text that contains the found fact. As long as the entity
really fits the fact, the evidence is likely to be correct as well.
We perform several queries, compare the result to a set of expected entities and
take precision, recall and f-measure. Finally, we discuss the outcome. We examine
queries with less good results in depth and try to determine the predominant reasons
for misbehavior.

5.1.1. Experimental Setup

The quality measurements have been executed on a machine where no running ver-
sion of Susi was available. Consequently, queries are processed over the network,
although this had only practical reasons. Basically, the evaluation framework com-
municates with Susi via HTTP, receives a result in XML format, which is then
parsed for a list of entities.
As expected entities, our ground truth, we chose Wikipedia lists. There are many
Wikipedia Lists that are sometimes generated from external resources and often
created by hand. Those lists may concern pretty much any topic. To name some
examples, there is a list of bridges, a list of British monarchs or a list of plants with
edible leaves. Each of the chosen lists is parsed by a dedicated Perl script. For most
of them, the relevant entities can easily be matched by a regular expression. Note
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that most existing approaches to semantic search could not even process all of those
queries, because some lists evolve around very specific facts that usually are not
reflected by relations in an ontology. Just consider the list of drug related deaths.
It is very unlikely to list the cause of death for every person.

In order to evaluate a query we join both lists, the expected one and the one Susi
returned, and mark each entity with one of the following:

True, which is used to mark entities that are in both lists. Everything works as
expected for them.

False-Pos for “false positives”, which is used for entities that are returned by Susi
but not in the ground-truth.

False-Neg for “false negatives”, which is used for entities that are in the ground-
truth but not returned by Susi.

The queries that are supposed to recreate those lists are chosen by hand. Sometimes,
we use multiple queries for the same list in order to compare them.

ID Wikipedia List as Ground Truth Query
Q1.1 Computer Scientists computer ...:person:scientist:*
Q1.2 Computer Scientists computer science ...:person:scientist:*
Q2.1 Treaties ...:writtenagreement:treaty:*
Q2.2 Treaties treaty ...:writtenagreement:treaty:*
Q3.1 Regions of France france ...:location:region:*
Q3.2 Regions of France regions of france ...:location:region:*
Q4 Cocktails ...:mixeddrink:cocktail:*
Q5 Political Authors political ...:communicator:writer:*
Q6.1 EMI Artists emi :..:creator:artist:*
Q6.2 EMI Artists emi :..:performer:musician:*
Q7 English Monarchs english ...:ruler:sovereign:*
Q8 Saturated Fatty Acids saturated fatty ...:compound:acid:*
Q9.1 Drug Related Deaths drug death ...:organism:person:*
Q9.2 Drug Related Deaths drug died ...:organism:person:*
Q9.3 Drug Related Deaths ...:substance:agent:drug:* died ...:organism:person:*
Q10.1 Presidents of the United States united states ...:corporateexecutive:president:*
Q10.2 Presidents of the United States united states elected ...:corporateexecutive:president:*

Table 5.1.: Quality Evaluation Queries

Table 5.1 contains all lists used for evaluation and the corresponding queries. Addi-
tionally, we assign IDs to the queries so that we can easily refer to them later. Note
that queries contain our long, artificial paths and had to be abbreviated. The full
ones can be found in the appendix.
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Susi, or actually CompleteSearch, already includes some kind of ranking for the
returned completions and hence the found entities. This rating simply reflects the
number of different positions of the completion in the text that are matched by
our search query. Consequently, we are able to examine the top-k entities returned.
This is an interesting measure, because an entity at the bottom of the result list is
usually not perceived at all or at least not as important as the top ones. For this
document we included the measurements for top-500.

5.1.2. Measurements

For each query we collect the total numbers and calculate precision, recall and f-
measure. With the current settings, Susi performs in the following way:

Query ID True False-Pos False-Neg Precision Recall F-Measure
Q1.1 295 3047 62 8.8% 82.6% 16%
Q1.2 248 1598 109 13.4% 69.5% 22.5%
Q2 762 863 143 46.9% 84.2% 60.2%
Q2.2 743 536 143 58.1% 82.1% 68%
Q3.1 26 47991 0 0.1% 100% 0.1%
Q3.2 26 5278 0 0.5% 100% 1%
Q4 88 83 68 51.5% 56.4% 53.8%
Q5 28 13236 19 0.2% 59.6% 0.4%
Q6.1 113 2420 256 4.5% 30.6% 7.8%
Q6.2 131 2633 238 4.7% 30.6% 7.8%
Q7 48 1412 11 3.3% 81.4% 6.3%
Q8 6 12 28 33.3% 17.6% 23.1%
Q9.1 50 863 164 5.5% 23.4% 8.9%
Q9.2 89 433 125 17% 31.6% 24.2%
Q9.3 89 918 125 8.8% 41.6% 14.6%
Q10.1 42 2255 1 1.8% 97.7% 3.6%
Q10.2 42 140 1 23.1% 97.7% 37.3%
Total 2826 83718 1512 3.3% 65.1% 6.2%

Table 5.2.: Quality Evaluation - All Completions
The statistics for each query are shown. True counts all entities that are in the
list and also get returned by Susi. False counts those that get returned but are
not in the list and missing counts those that are in the list but are not returned
by Susi. Note, that the total statistics are influence by the extreme outliers. In
the following section, we examine why some queries perform good, while others
do not and determine common reasons for failure.
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Query ID True False-Pos False-Neg Precision Recall F-Measure
Q1.1 160 309 197 34.1% 44.8% 38.7%
Q1.2 149 327 208 31.3% 41.7% 35.8%
Q2 299 201 606 59.8% 33% 42.6%
Q2.2 396 104 509 79.2% 43.8% 56.4%
Q3.1 22 276 4 7.4% 84.7% 13.6%
Q3.2 24 351 2 6.4% 92.3% 11.9%
Q4 88 83 68 51.5% 56.4% 53.8%
Q5 10 371 37 2.6% 21.2% 4.6%
Q6.1 69 407 300 14.5% 18.7% 16.3%
Q6.2 65 363 304 15.2% 17.6% 16.3%
Q7 45 453 13 9% 77.6% 16.2%
Q8 6 12 28 33.3% 17.6% 23.1%
Q9.1 23 230 191 9.1% 10.7% 9.9%
Q9.2 63 231 151 21.4% 29.4% 24.8%
Q9.3 42 272 172 13.4% 19.6% 15.9%
Q10.1 42 458 1 8.4% 97.7% 15.5%
Q10.2 42 140 1 23.1% 97.7% 37.3%
Total 1545 4589 2792 25.2% 35.6% 29%

Table 5.3.: Quality Evaluation - Top 500 Completions
The statistics for each query with top 500 retrieval are shown. Note that the
top 500 completions do not necessarily reflect 500 distinct entities. For example
scientist:biologist:aristotle and scientist:mathematician:aristotle are two comple-
tions describing the same entity. Apart from that, the principle is identical to the
style of table 5.2.

5.1.3. Interpretation

In order to correctly interpret the results, we have to pay special attention to queries
Q2.1 and Q4. For each of those queries, there is coincidentally a Yago category
that should directly reflect the Wikipedia list used as ground truth. However, the
results are not close to 100% precision and recall at all. Consequently, we note
that there has to be a mismatch. Further observation shows that sometimes Yago
does not completely classify all entities, but on the other hand, the Wikipedia lists
themselves may have lots of flaws. The most common issue is that manually created
lists are far from being complete. Hence, many entities returned by Susi are actually
correct but recognized as false positives. Additionally, the Wikipedia lists may also
contain false positives themselves. For example, the list of cocktails lists drinks that
are not actual cocktails but would commonly be classified as liqueurs.
Keeping this issue in mind, we still notice significant differences between the queries
that cannot be related to flaws in the Wikipedia lists. Naturally, we want to examine
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possible reasons for this observation. Therefore, we pick some queries and analyze
them in detail. Fortunately, we do not only have total and relative numbers for our
evaluation but also the particular entities that are classified as either True, False-
Pos or False-Neg. Thus, we can look at both, false positives and false negatives, go
through the Wikipedia documents, check Yago and finally state as reason for this
mismatch between the result from Susi and the Wikipedia list. In order to establish
a systematic system we define several classes of common errors. Subsequently, we
can assign one of those classes to each incorrectly returned entity. We use the
following classes:
L List Problem.

There is a problem with the Wikipedia list used as ground truth for that query.
Either the entity should be in the list but actually is missing or it is in the list
while it does not deserve to be.
Example: Thomas Hobbes missing in the Wikipedia list of political writers.

Y Yago Problem.
There is a mistake in Yago. Usually this means that an entity misses a class
it actually belongs to. This usually happens when Wikipedia articles are not
assigned to categories, the source for huge parts of the classifications in Yago.
Example: Bill Clinton not being classified as president.

A Abstract Entity Problem.
The entity is some abstract entity like computer scientist instead of a name of a
concrete person. While the page entity computer scientist is a valid instance of
scientist and of a person, lists usually only contain concrete persons or likewise
concrete entities. Currently, Susi does not distinguish between abstract and
concrete entities.
Example: The entity Journalist is returned as political writer.

R Referral Problem.
The fact refers to some other entity but both are mentioned in the same
sentence.
Example: John Doe saw on the television that Jane Smith discovered a cure for
cancer. John Doe would accidentally get associated with the cure for cancer.

Q Query Problem.
There is no suitable way to express the precise semantics of a list as query.
Often this is caused by imprecise Yago categories.
Example: Only single persons are classified as musicians or artists. Bands are
classified as groups at best, while group is a very general class that contains
things entirely unrelated to musicians such as institutions or organizations and
many more.

E Entity Recognition Problem.
Some passage in the text is recognized as wrong entity.
Example: Herman Einstein was a salesman and engineer. Herman, who is
Albert’s father, might mistakenly get recognized as Albert Einstein himself.
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W Incomplete Wikipedia.
The entity in the list references an entity that does not have its own Wikipedia
page.
Example: There is no page for Tridecylic acid, while it occurs in the list of
saturated fatty acids. In the list, there is a link to a nonexistent page.

D Disambiguation Problem.
Example: The word wardrobe describes many things. A piece of furniture, a
clothing and more. An occurrence of this word might get recognized as the
wrong entity.

F Fact not Found.
The fact cannot be found in Wikipedia apart from the list itself. This means
it is definitely not on the entity’s page (confirmed manually) and probably not
located on some other page either (hard to check manually).
Example: Victoria Beckham is in the list of EMI artists. However, no other
point could be found where it is stated that she really released something
under this label.

N Negation Problem.
Often negations contain the same words as the positive case, plus an addition-
ally not.
Example: This fatty acid is not saturated.

S Synonymy.
The fact is expressed differently. This is a common problem for search engines
in general and not specifically related to semantic Wikipedia search.
Example: He committed suicide vs he shot himself.

Z Others.
This label classifies problems that could not be assigned to any of the above
categories.

These categories may also serve as basis for any further evaluation that is performed
on a larger scale. For now, we can only examine a few example queries. First of all,
we want to have a look at the list of political writers which led to poor values. Let
us recall the statistics for this query.

Query ID True False-Pos False-Neg Precision Recall F-Measure
Q5 28 13236 19 0.2% 59.6% 0.4%

Table 5.4.: Statistics for Query Q5 (political writers)

Since there are actually quite few entities that Susi could not find, we are able to
regard all of them (false negatives). Additionally, we want to look at the topmost
30 of the false positives:
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False Positives
Entity Reason

Journalist A
Adolf Hitler L

Barack Obama L
Writer A

John F. Kennedy L
Winston Churchill L

John McCain L
Thomas Jefferson L
Julius Caesar L

Niccolò Machiavelli L
Mao Zedong L

Mohandas Ghandi L
Theodore Roosevelt L
Saddam Hussein L
Jimmy Carter L
Thomas Hobbes L

Columnist A
Leon Trotsky L
Leo Strauss L

Hannah Arendt L
Gordon Brown L
William Godwin L
Harry S. Truman L
David Axelrod L

Vladimir Tismaneau L
George Washington L

Al Gore L
Plato Z

Otto von Bismarck L
Benjamin Franklin L

False Negatives
Entity Reason

Alireza Jafarzadeh F / S
Amartya Sen Y

Andy Croft (Writer) F / S
Charles E. Silberman X

David Gautier Y
Frank A. Capell W

Gheorghe Alexandrescu Y
Greg Palast X

Jan Narvseson Y
Jean Edward Smith Y

John Locke Y
John Rawls Y

Józef Mackiewicz X
Jürgen Habermas Y

Karl Marx Y
Lewis Gassic Gibbon Y

Plato (Computer System) Z
Roberto Quaglia L
Thomas R. Dye Y

Table 5.5.: Evaluation of Query Q5 (political writers)

Table 5.5 gives us some insight on what went wrong with query Q5 that is supposed
to recreate the list of political writers. We can see that the false positives contain
some abstract entities while most of them are writers that actually should be in the
list. The entity Plato is a special case. As we can see the ground truth somehow
contains the entity Plato, the Computer System. However, this is not an error in
the Wikipedia list, instead there seems to be a problem with case insensitivity of the
redirect map. The Wikipedia page PLATO in all upper case redirects to the page
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of the computer system. Plato, on the other hand is the page for the philosopher
as expected. Unfortunately, the redirect map redirects occurrences of Plato to the
page of the computer system. This issue can easily be fixed as discussed in chapter
6, Future Work. Apart from that, the false positives only confirm how bad the
hand-made Wikipedia lists can be and we should note, that abstract entities are
in fact an issue. The false negatives, however, are more interesting. While there
are some lesser known writers whose Wikipedia pages do not contain all necessary
information, the predominant problem are Yago categories. Many philosophers are
not classified as writers although they published several books or articles.
As a second example, we want to examine the query for the regions of France.
Especially query Q3.1 shows terrible precision. The first guess should be that the
word region is ambiguous. While the Wikipedia list contains the 26 political regions
of France, the area between two arbitrary villages, a city or even another country,
can also be described as a region. In order to confirm this theory, we look at the
top 20 false positives.

Entity Reason According to the Categories
France Q - The class region is too general.

Departments of France A - Abstract entity.
Communes of France A - Abstract entity

Paris Q - The class region is too general.
Germany Q - The class region is too general.
Italy Q - The class region is too general.

Regions of France A - Abstract entity, the list itself.
Spain Q - The class region is too general.

United Kingdom Q - The class region is too general.
Belgium Q - The class region is too general.
England Q - The class region is too general.

Switzerland Q - The class region is too general.
Netherlands Q - The class region is too general.
Canada Q - The class region is too general.
Russia Q - The class region is too general.
Austria Q - The class region is too general.
Australia Q - The class region is too general.

New France Q - The class region is too general.
Sweden Q - The class region is too general.
Poland Q - The class region is too general.

Table 5.6.: Top 20 False Positives for Q3.1 (regions of France)

Table 5.6 clearly confirms our theory. The class region is too general and not limited
on the political regions form the list. However, we observe a second phenomenon.
The word France also causes problem. While the lists uses it to describe the region,
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the word also describes the entity France. Hence, many regions - especially countries
- that have some relation with the country France are contained in the result of our
query. Either way, it is safe to say that the bad precision is caused by our ambiguous
query.

Finally, we want to consider another example. In order to regard something new,
we pick a query with many false negatives. Query Q6, which is supposed to recreate
the list of EMI artists has the worst recall with only 30%. We examine 20 false
positives ones and 20 false negatives for this query.

False Positives
Entity Reason

Musician A
Songwriter A

George Martin L
Composer A

Guiseppe Verdi R
John Lennon Z

Alice (Italian Singer) L
Franz Schubert Ö
Sakis Rouvas L
Emi Hinouchi Z

Richard Wagner L
Ringo Starr Z
Brian Epstein Q
Emi Maria Z
Per Gessle R

Wolfgang Amadeus Mozart L
Richard Strauss L
Giacomo Puccini L
Berlin Philharmoic L

Ludwig van Beethoven R

False Negatives
Entity Reason

All-4-One Q
Adrian Gurvitz F
Agustin Anievas Y

Air Traffic Q
Airbourne (Band) Q

Al’Margir Q
Alfie (Band) Q

Anouk Q
Apawk Q
Art Brut Q

Iron Maiden Q
jaguares Q

Jake Hook Y
Jane’s Addiction Q
Victoria Beckham F/L
Vincent Vincent Y
Vodka Collins Q

W.A.S.P Q
Wanda Jackson F/L

Watershed Q
Table 5.7.: Evaluation of Query Q6 (EMI artists)

Our results listed in table 5.7 give an obvious answer to why this query has a
lower recall than others. When we want to express a class that describes artists or
musicians, we cannot find a suitable Yago category. All bands, ensembles, etc do
not share a class with solo artists. This is why the query does not return groups
and hence the recall suffers immensely. The false positives can also be related to
an interesting issue. Many musicians are returned that were never signed at EMI
during their solo career. However, they are part of bands that are. This leads to the
Beatles being one of the false negatives, while their members occur as false positives.
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Another issue is that composers get returned whose work has been performed by
some EMI artist. This is a referral problem and caused by using mere co-occurrence
in a sentence for identifying semantic facts.
In summary, we see that most analysis lead to a discovery that allows really easy fixes
and consequently improves to quality of the results returned by Susi. Obviously,
this makes further evaluation an important goal for future work.

5.2. Performance

Apart from quality, there is a second very important aspect to our evaluation. Per-
formance and efficiency are absolutely crucial. We have already seen the path style
annotations that are supposed to achieve better performance. While we have seen
that they are in fact very space efficient, we now want to to measure and examine
response times for queries in practice. Especially since fine-tuning some settings
may have a huge impact on performance, we really want an evaluation of concrete
queries in order to spot cases where existing heuristics seem to fail.

5.2.1. Experimental Setup

All our experiments were run on an Intel Xeon X5560 2.8GHz machine with 16
processors, 40 GB of main memory, and running Linux. For the evaluation, an
existing framework has been used which is part of the CompleteSearch project. It
provides detailed statistics for each query as well as a summary. The complete
statistics can be found in the appendix.
The queries from table 5.8 have been used for this part of the evaluation. Note, that
Q1 to Q10.2 denote the queries from the quality evaluation whose performance is
evaluated, too.

Query ID Query
P0.1 &:e:...:organism:person:*
P0.2 &:e:...:location:region:*
P1 search engine
P2 :e:entity:alberteinstein:*
P3 :e:...:eater:vegetarian:*
P4 :e:...organism:person:*
P5 penicillin :e:...:person:scientist:*
P6 computer science :e:...:organism:person:*
P7 :t:algorithm*

Q1.1 - Q10.2 See table 5.1
Table 5.8.: Queries for the Performance Evaluation
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We have extended the queries by two warm-up queries. The & symbol marks queries
that are not supposed to contribute to the statistics. Those warm-up queries fill a
specific part of Susi’s history that is always kept in the cache. In production mode,
Susi will always have this caches filled, too. However, we also evaluate our queries
with cold caches once, in order to gain more insight on cache effects and possible
problems.

5.2.2. Measurements

With warm-up
Query Millisecs Strategy
P1 109.7 scan 2 blocks
P2 5.5 scan 1 block
P3 694.6 filter from hist
P4 0.0 fetch from hist
P5 62.0 scan 2 blocks
P6 375.8 scan 2 blocks
P7 3.2 scan 1 block
Q1.1 50.6 scan 1 block
Q1.2 2.7 filter from hist
Q2.1 69.6 scan 2 blocks
Q2.2 41.6 scan 1 block
Q3.1 287.7 scan 1 block
Q3.2 864.9 scan 1 block
Q4 31.7 scan 1 block
Q5 366.9 scan 2 blocks
Q6.1 224.8 scan 2 blocks
Q6.2 276.0 scan 1 block
Q7 159.4 scan 2 blocks
Q8 48.4 scan 3 blocks
Q9.1 137.6 scan 2 blocks
Q9.2 103.3 scan 1 block
Q9.3 163.5 scan 2 blocks
Q10.1 1001.7 scan 3 blocks
Q10.2 56.4 scan 1 block
Avg 214.1 -

Without warm-up
Query Millisecs Strategy
P1 109.9 scan 2 blocks
P2 5.4 scan 1 block
P3 42.2 scan 1 block
P4 19740.9 scan 155 blocks
P5 63,6 scan 2 blocks
P6 366.4 scan 2 blocks
P7 3.0 scan 1 block
Q1.1 48.0 scan 1 block
Q1.2 2.4 filter from hist
Q2.1 66.5 scan 2 blocks
Q2.2 37.5 scan 1 block
Q3.1 1643.1 scan 58 blocks
Q3.2 1816.1 scan 59 bocks
Q4 34.9 scan 1 block
Q5 353.6 scan 2 blocks
Q6.1 216.3 scan 2 blocks
Q6.2 268.9 scan 1 block
Q7 155.3 scan 2 blocks
Q8 46.5 scan 3 blocks
Q9.1 132.4 scan 2 blocks
Q9.2 99.7 scan 1 block
Q9.3 158.5 scan 2 blocks
Q10.1 950.5 scan 3 blocks
Q10.2 49.2 scan 1 block
Avg 1100.4 -

Table 5.9.: Performance Evaluation
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5.2.3. Interpretation

The measurements presented above provide insight into the current state of Susi’s
performance. We see that most queries are processed within only tens of millisec-
onds. However, there are also queries that require about a whole second to finish
which is not really acceptable. This behavior is most likely related to suboptimal
block boundaries for the HYB index.
Just look at the query for American presidents which performed poorly. The rea-
son is, that the current heuristic uses one block for each direct subclass of person.
However, in the case of the class president, the content is located in a block for all
leaders which has about 6 million entries. Subsequently, only words that are actual
completions of president have to be filtered. In fact, we have examined this further
and were able to conclude that there are 5,930,590 leader vs 1,343,830 scientist oc-
currences and 164,812 leader vs 36,782 scientist completions. So we can be pretty
sure that this block is in fact too huge to deliver the desired performance results.
In conclusion, we can say that it would be wise to divide the vocabulary further.
Especially since no queries required scanning lots of blocks, it is save to say that
further division should not harm the performance. However, fine-tuning is postponed
for now and counted towards future work instead.
The second thing we notice concerns query P3 which queries for vegetarians. Being
a subclass of person, the entries can be filtered from history. In this particular
case, however, the cold queries show that actually reading the corresponding block
from disk instead of filtering, is faster by order of magnitude. CompleteSearch is
configured based on the expectation that filtering form history is always faster than
reading blocks from disk and decompressing them. However, the different nature
of the artificial words used by Susi, render this expectation wrong under some
circumstances. Consequently, this is another issue that should be regarded in the
future.
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This final chapter concludes the work done for Susi. Additionally, it features a list
of pieces of future work. For some of the issues, we can already propose possible
solutions. On top of that, we try to judge the necessary effort involved whenever
possible.

6.1. Conclusion

We have introduced an approach to semantic search that combines full-text with
ontology search and presented its application in form of our system Susi. Susi en-
ables search that directly finds facts in the English Wikipedia and provides excerpts
from the text as evidence. While existing approaches to semantic search restrict
themselves to search on a fixed set of attributes or relations, being able to access all
information in the text obviously exceeds those restrictions.
Our evaluation has shown that we already achieve query processing times of fractions
of a second. However, there are still some outliers that leave room for improvements.
Queries that take over half a second are not really acceptable. Fortunately, those
queries can easily be accelerated by fine-tuning such as choosing more suitable block
boundaries for the HYB index.
On the other hand, quality evaluation has show that precision and recall are not
entirely satisfying, yet. However, a huge portion of unexpected outcomes can be
related to mistakes and especially incompleteness of the Wikipedia lists that have
been used as ground truth. Still, there are several issues that spoil precision and
recall and that should be tackled in order to improve the quality of the results
delivered by Susi. Especially distinguishing abstract and concrete entities should
possibly help a lot. Fortunately, detailed examination of our results has shown that
for each query with bad statistics there usually is one distinct problem to blame it
on. This observation allows focusing on issues whose resolution will really improve
the system.

6.2. Future Work

Throughout this whole thesis we have presented all relevant aspects to the creation
of Susi and identified several issues that currently require further improvements.
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We now want to summarize future work as a list. Note, that we try to state possible
solutions and estimate the effort for them. The list items are ordered by decreasing
priority.

1. Add case sensitivity to the redirect map. Wikipedia URLs and the resulting
redirects are case sensitive, too. For example, PLATO redirects to the entity
PLATO_(Computer_System) while Plato points to the philosopher’s article.
This issue has high priority because it is a real bug and no failure of a heuristic
and hence is pretty easy to fix. Estimated effort: 1-2 days, since the parser
has to be modified in order to preserve the case of recognized entities a bit
longer, too.

2. Stop parsing Wikipedia pages called Template:.. . Those pages do not contain
interesting facts and spoil both, the result itself and especially the excerpts.
Estimated effort: A few minutes plus rebuilding the index.

3. Add a ranking to the excerpts. While the completions are already ranked by
frequency and deliver a really convenient output, the excerpts are ranked by
document ID. Consequently, displaying excerpts for lowly ranked completions
happens a lot. Frequently, this even involves list-like documents or Wikipedia
template pages that deliver really messy excerpts. Estimated effort: 1 week
or more, since a whole new concept of relating their ranking to the rankiong
of the completions has to be established.

4. Distinguish abstract entities (physicist) from concrete ones (Albert Einstein).
This could be done by using different prefixes and adapting the UI accordingly.
The entities can actually be distinguished very well. Yago uses different files
for entities that are derived from WordNet and for those that are extracted
from Wikipedia articles. Abstract entities are usually contained in WordNet
and hence the ones extracted from articles can be assumed to be concrete
entities. There is already a script that is able to flag abstract or concrete
entities that has been used for measurements. For the current version of Susi,
it is not included in the make-chain. Estimated time: 1 day for changes to the
created index, multiple days or weeks for the necessary UI remake to support
the distinction.

5. Quality evaluations at a larger scope. With help of Amazon Mechanical Turk
or similar systems, we could evaluate a lot more queries and gain even more
insight.

6. Forbid some queries in the UI. For example, typing :e:entity can be deadly
for the system because it is a prefix of half of the index which is just too
much to process. So just like the UI prevents prefix queries that consist
of only one letter, those queries should be avoided as well and a prefix for
:e:entity:alberteinstein: should only be processed as soon as it reaches
a certain length or probably the second colon. Estimated effort: 1 day.

7. Add more relations from Yago or some other ontology like DBpedia. While
it is nice to express some semantic relations by mere co-occurrence, useful
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realtions are already present in existing ontologies. Using them should be a
source of highly precise facts.

8. Prefixes for semantic classes may currently have more completions than there
are actual entity occurrences that fit. For example the prefix ...organism:person:
will have more multiple completions for each occurrence of Albert Einstein -
e.g. ...physicist:alberteinstein, ...vegetarian:alberteinstein and
so on. We have taken measurements and for the prefix person the current
version has 2.59 times more completions than there are actual occurrences.
Consequently, this is not critical at the moment but still a huge possible source
of inefficiency of the path-style annotations. Thus, the path-style annotations
still leave room for improvements.

9. Refine the scope of facts. Simply choosing sentences, items in lists and rows in
tables works for many cases but at the same time ignores many constructs in
human language. Consequently, some facts are lost while false ones are added.

10. Experiment with the pronoun recognition. If both, the document entity and
the last entity from the text, match the type of the pronoun it is hard to decide
which one to choose. Currently, no real experiments have been done. One cold
easily experiment with the order for a few hours. However, in the long run,
linguistic analysis may be far superior, but infering them involves much more
work.

11. Rework the decision when to filter query results from history and when to scan
blocks from the disk. For the query ...:person:user:eater:vegetarian:*
scanning only takes about 10ms whereas filtering may take more than 500ms,
if the CompleteSearch engine filters from the huge result set for the query
...:person:*. The block that would be scanned (user:*), on the other hand,
is really small.

12. Noun phrase recognition. For example, an entity therapy center should be
recognized as one thing so that it does not match the sole word therapy at
some other point. For names, on the other hand, matching only first- or last
name is sometimes desired. However, sometimes one also has to take care
not to confuse relatives or siblings. While this sounds important, almost no
concrete case occurred during evaluation where an error could be related to
this or the following phenomenon.

13. Disambiguation between abstract entities. Since abstract entities are not re-
lated to Wikipedia articles in Yago, it is hard to associate the right one with
an occurrence in the text. For example, there are five WordNet entities for
wardrobe meaning the piece or furniture, the clothing and so on. While they
are distinguished in WordNet and Yago, it is hard to tell which one to choose
if a Wikipedia entity called wardrobe is discovered.

Apart from the improvements from the above list, there is also more to address
in the future. While the above list contains pieces of future work that contribute
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further to the current goal behind Susi, we can also extend the goal by some facets.
First of all, we may want to extend the ontology part of the search. Currently, Susi
only uses information about the semantic classes of entities while Yago actually
also provides a lot more relations such as bornIn, hasGdp and so on. Including
some or all of those relations can be used to restrict entities not only by class but
also by attributes.
Apart from that, the creation of a user-interface dedicated to semantic search is
an interesting project for the future. The current UI has been created for tradi-
tional search applications. The extensions made to support semantic queries are
possible due to its modular architecture that evolves around multiple independent
boxes. However, most of those extensions are mere hacks and a system dedicated
to semantic queries would be a lot more suited.
Either way, there are lots of topics that can be addressed in the future. Querying
Susi already is real fun and delivers interesting results, but there is still so much to
do until all semantic queries can be processed perfectly.
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A. Appendix

A.1. Full Queries of Quality Evaluation

Q1.1 computer :e:entity:physicalentity:object:whole:livingthing:organism:
person:scientist:*

Q1.2 computer science :e:entity:physicalentity:object:whole:livingthing:organism:
person:scientist:*

Q1.3 computer scientist :e:entity:physicalentity:object:whole:livingthing:organism:
person:scientist:*

Q2.1 :e:entity:abstraction:communication:message:statement:agreement:
writtenagreement:treaty:*"

Q2.2 treaty :e:entity:abstraction:communication:message:statement:agreement:
writtenagreement:treaty:*

Q3.1 france :e:entity:physicalentity:object:location:region:*
Q3.2 region of france :e:entity:physicalentity:object:location:region:*
Q4 :e:entity:physicalentity:matter:substance:food:beverage:alcohol:

mixeddrink:cocktail:*
Q5 political :e:entity:physicalentity:object:whole:livingthing:organism:

person:communicator:writer:*
Q6.1 emi :e:entity:physicalentity:object:whole:livingthing:

organism:person:creator:artist:*
Q6.2 emi :e:entity:physicalentity:object:whole:livingthing:organism:

person:entertainer:performer:musician:*
Q7 english :e:entity:physicalentity:object:whole:livingthing:

organism:person:ruler:sovereign:*
Q8 saturated fatty :e:entity:physicalentity:matter:substance:

material:chemical:compound:acid:*
Q9.1 drug death :e:entity:physicalentity:object:whole:

livingthing:organism:person:*
Q9.2 drug died :e:entity:physicalentity:object:whole:

livingthing:organism:person:*
Q9.3 :e:entity:physicalentity:matter:substance:agent:drug:* died

:e:entity:physicalentity:object:whole:livingthing:organism:person:*
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Q10.1 united states :e:entity:physicalentity:object:whole:livingthing:organism:
person:leader:head:administrator:executive:corporateexecutive:president:*

Q10.2 united states elected :e:entity:physicalentity:object:whole:livingthing:organism:
person:leader:head:administrator:executive:corporateexecutive:president:*

A.2. Full Queries of Performance Evaluation

P0.1 &:e:entity:physicalentity:object:whole:livingthing:organism:person:*

P0.2 &:e:entity:physicalentity:object:location:region:*

P1 search engine :e:entity:alberteinstein:*

P2 :e:entity:physicalentity:object:whole:livingthing:organism:person:*

P3 :e:entity:physicalentity:object:whole:livingthing:organism:
person:user:consumer:eater:vegetarian*

P4 penicillin :e:entity:physicalentity:object:whole:livingthing:organism:person:scientist*

P5 computer science :e:entity:physicalentity:object:whole:livingthing:organism:person:*

P6 :t:algorithm*
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