
Broccoli: Semantic Full-Text Search at your Fingertips

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast,baeurlef,buchholb,haussmae}@informatik.uni-freiburg.de

ABSTRACT
We present Broccoli, a fast and easy-to-use search engine for
what we call semantic full-text search. Semantic full-text
search combines the capabilities of standard full-text search
and ontology search. The search operates on four kinds of
objects: ordinary words (e.g. edible), classes (e.g. plants),
instances (e.g. Broccoli), and relations (e.g. occurs-with or
native-to). Queries are trees, where nodes are arbitrary bags
of these objects, and arcs are relations. The user interface
guides the user in incrementally constructing such trees by
instant (search-as-you-type) suggestions of words, classes,
instances, or relations that lead to good hits. Both standard
full-text search and pure ontology search are included as
special cases.

In this paper, we describe the query language of Broccoli,
a new kind of index that enables fast processing of queries
from that language as well as fast query suggestion, the nat-
ural language processing required, and the user interface.
We evaluated query times and result quality on the full ver-
sion of the English Wikipedia (32 GB XML dump) combined
with the YAGO ontology (26 million facts). We have imple-
mented a fully-functional prototype based on our ideas, see
http://broccoli.informatik.uni-freiburg.de.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Context
Analysis and Indexing—Indexing methods, Linguistic pro-
cessing ; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—Query formulation, Retrieval
models, Search process; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Theory and methods

General Terms
Algorithms, Design, Experimentation, Human Factors, Per-
formance

Keywords
Semantic full-text search, search as you type, Wikipedia

1. INTRODUCTION
In this paper, we describe a novel implementation of what

we call semantic full-text search. Semantic full-text search
combines traditional full-text search with structured search
in knowledge databases or ontology search as we call it in
this paper.

In traditional full-text search you type a (typically short)
list of keywords and you get a list of documents containing
some or all of these keywords, hopefully ranked by some no-
tion of relevance to your query. For example, typing broccoli
leaves edible in a web search engine will return lots of web
pages with evidence that Broccoli leaves are indeed edible.

In ontology search, you are given a knowledge database
which you can think of as a store of subject-predicate-object
triples. For example, Broccoli is-a plant or Broccoli native-
to Europe. These triples can be thought of to form a graph
of entities (the nodes) and relations (the edges), and ontol-
ogy search allows you to search for subgraphs matching a
given pattern. For example, find all plants that are native
to Europe.

Many queries of a more “semantic” nature require the
combination of both approaches. For example, consider the
query plants with edible leaves and native to Europe, which
will be our running example in this paper. A satisfactory an-
swer for this query requires the combination of two kinds of
information. First, a list of plants native to Europe. This is
hard for full-text search but a showcase for ontology search,
see above. Second, for each plant the information whether
its leaves are edible or not. This kind of information can be
easily found with a full-text search for each plant, see above.
But it’s quite unlikely (and unreasonable) to be contained
in an ontology, for reasons explained in Section 2.3.

The basic principle of our combined search is to find con-
textual co-occurrences of the words from the full-text part
of the query with entities matching the ontology part of the
query. Consider the sentence: The stalks of rhubarb are ed-
ible, but its leaves are toxic. Assume for now that we can
recognize entities from the ontology in the full text (we come
back to this in Section 3.2). In this case, the two underlined
words both refer to rhubarb, which our ontology knows is
a plant that is native to Europe. Obviously, this sentence
should not count as evidence that rhubarb leaves are edible.
We handle this by decomposing (after the entity recognition
phase) each sentence into what we call its contexts: the parts
of the sentence that “belong” together. In this case the stalks
of rhubarb are edible and rhubarb leaves are toxic. An arc
from the query tree now matches if and only if it’s elements
co-occur in one and the same context; this will be explained
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Words 

Cabbage (34) 

Broccoli (58) 

Lettuce (23) 

Instances: 

1 - 3 of 421 

House plant (17) 

Garden plant (24) 

Crop (16) 

Classes: 

1 - 3 of 28 

  Broccoli 

Ontology: Broccoli 

Broccoli: is a plant; native to Europe. 

Document: Edible plant stems 

The edible portions of Broccoli are the stem tissue, the flower buds, as 

well as the leaves. 

 

Cabbage 

Ontology: Cabbage 

Cabbage: is a plant; native to Europe. 

 
Document: Cabbage 

The only part of the plant that is normally eaten is the leafy head. 

Your Query: 

Plant 

occurs-with edible leaves 

native-to 

Hits: 1 - 2 of 421 

Europe 

   

occurs-with  <Anything> 

Relations: 

1 - 3 of 7 

cultivated-in  <Location> 

belongs-to   <Plant family> 

(67) 

(58) 

 type here to extend your query … 

Figure 1: A screenshot of the final result for our example query. The box on the top right visualizes the
current query as a tree. There is always one node in focus (shown in bold), in this case, the root of the tree.
The large box below shows the hits grouped by instance (of the class from the root node) and ranked by
relevance (if Broccoli is among the hits, we always rank it first). Evidence both from the ontology and the
full text is provided. For the latter, a whole sentence is shown, with parts outside of the matching context
grayed out. With the search field on the top left, the query can be extended further. The four boxes below
provide context-sensitive suggestions that are updated after every keystroke. The suggestions depend on the
current focus in the query, here: suggestions for subclasses of plants, suggestions for instances of plants that
lead to a hit (those are exactly those from the hits box, and in the same order), suggestions for relations to
further refine the query. Word suggestions make no sense at this point in the query; see Figure 2. One of
the suggestions is always highlighted, in this case the cultivated-in relation. Pressing Return will extend the
query by adding the highlighted suggestion.

in detail in Section 5.3.
Figures 1 and 2 show screenshots of our search engine in

action for our example query. The figure and its caption also
explain how the query can be constructed incrementally in
an easy way and without requiring knowledge of a partic-
ular query language on the part of the user. We encour-
age the reader to try our online demo on http://broccoli.

informatik.uni-freiburg.de.

1.1 Our contribution
Broccoli supports a subset of SPARQL1 (essentially trees

with a single free variable at the root) for the ontology part
of queries. Moreover, it allows a special occurs-with relation
that can be used to specify co-occurrence of a class (e.g.
plant) or instance (e.g. Broccoli) with an arbitrary com-
bination of words, instances, and further subqueries. Both
traditional full-text search and pure ontology search are sub-
sumed as special cases. This gives a very powerful query
language. See Section 4 for details.

For the occurs-with relation, we provide a novel kind of
pre-processing that decomposes sentences into contexts of

1http://www.w3.org/TR/rdf-sparql-query

words that belong together. In particular, this considers
enumerations and sub-clauses. Previous approaches have
used co-occurrence in a whole paragraph or sentence, or
based on word proximity; all of these often give poor re-
sults. See Section 3 for details.

We present a novel kind of index that supports fully in-
teractive query times of around 100 milliseconds and less
for a collection as large as the full English Wikipedia (32
GB XML dump, 290 million contexts of the kind just de-
scribed). Previous approaches, including adaptations of the
classic inverted index, yield query times on the order of sec-
onds or even minutes for the kind of queries we support on
collections of this size. See Section 2.1 for related work, and
Section 5 for details.

All the described features have been implemented into a
fully-functional system with a comfortable user interface.
There is a single search field, as in full-text search, and sug-
gestions are made after each keystroke. This allows the user
to incrementally construct semantic full-text queries without
prior knowledge of a query language. Results are ranked by
relevance and grouped by instance, and displayed together
with context snippets that provide full evidence for why that
particular instance is shown. See Figures 1 and 2 for an ex-
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Words: 

1 - 3 of 1.377 

Plan (drawing) (132) 

Plane (geometry) (215) 

Planar graph (124) 

Entities: 

1 - 3 of 535 

Planet (12.420) 

Plant (16.266) 

Plant (building complex) (4.288) 

Classes: 

1 - 3 of 36 

Words: 

1 - 3 of 178 

Leather (53) 

Leaf (81) 

Lead (24) 

Entities: 

1 - 3 of 67 

Leader (3.432) 

League (5.557) 

Learning disorder (53) 

Classes: 

1 - 3 of 33 

Baobab (52) 

Broccoli (58) 

Alfalfa (17) 

Entities: 

1 - 3 of 67 

House plant (49) 

Garden plant (98) 

Crop (36) 

Classes: 

1 - 3 of 47 

   

occurs-with <Anything> 

Relations: 

1 - 3 of 8 

native-to <Location> 

cultivated-in <Location> 

(97) 

(82) 

  plant, the CLASS   edible leaves   native-to, the RELATION 

occurs-with 

Plant 

edible leaves occurs-with 

Plant 

ANYTHING 
No query yet 

plans 

planned 

plants 

(61.838) 

(60.569) 

(56.481) 

leaves 

leaf 

leafy 

(4.617) 

(1.600) 

(264) 

Figure 2: Snapshots of the query, search field, and suggestion boxes for three stations in the construction
of our example query. Column 1: At the beginning of the query, after having typed plan. Column 2: After
plant has been selected (by pressing Return) and the occurs-with relation has been added (by pressing Return
again) and having typed edible lea. Column 3: After having selected edible leaves (by pressing Return). The
focus automatically goes back to the root node, and the top relation that is not occurs-with is pre-selected
(we could select and add another occurs-with if we wanted to though).

ample, and Section 6 for details.
We provide experimental results on index construction

times, query times, and result quality for the English Wiki-
pedia combined with the YAGO ontology [18]. For the qual-
ity results, we use two benchmarks: 15 queries from the
TREC 2009 Entity Track (e.g., Airlines that currently use
Boeing 747 planes), and 10 lists from Wikipedia (e.g. List
of plants with edible leaves). In both cases, we achieve good
precision, and we find many additional instances that were
missing, especially from the Wikipedia lists. See Section 7
for the details of our experiments.

We want to remark that the natural language processing,
the index, and the user interface behind Broccoli are com-
plex problems each on their own. The contribution of this
paper is the overall design of the system, the basic ideas
for each of the mentioned components, an implementation
of a fully-functional prototype based on these ideas, and a
first performance and quality evaluation providing a proof of
concept. Optimization of the various components is the next
step, which we consider a very fruitful direction for future
research; see Section 8.

2. RELATED WORK
Putting the work presented in this paper into context is

hard for two reasons. First, the literature on semantic search
technologies is vast. Second, “semantic” means so many dif-
ferent things to different researchers. We roughly divide
work in this broad area into four categories, and discuss
each category separately in the following four subsections.

2.1 Combined ontology and full-text search
Ester [5] was the first system to offer efficient combined

full-text and ontology search on a collection as large as the
English Wikipedia. Broccoli improves upon Ester in three
important aspects. First, Ester works with inverted lists
for classes and achieves fast query times only on relatively
simple queries; this is explained in more detail in Section
5.1. Second, Ester does not consider contexts but merely
syntactic proximity of words / entities. Third, Ester’s sim-
plistic user interface was ok for queries with one relation,
but practically unusable for more complex queries.

Following Ester, various other systems offering combina-
tions of full-text and ontology search have been proposed.
Semplore [19] supports a query language similar to ours.
However, elements from the ontology are not recognized in
their contexts, but there is simply one piece of text associ-
ated with each instance (which would correspond to a single
large context in our setting). Queries are processed with
a standard inverted index (see Section 5.1), and no partic-
ular UI is offered. In Hybrid Search [7], the full-text and
the ontology are searched separately with standard meth-
ods (Lucene and Sesame), and then the results are com-
bined. There is no particular natural language processing.
Concept Search [13] adds information about identified noun
phrases and hyponyms to the index. Queries are bags of
words, which are interpreted semantically. The query pro-
cessing uses standard methods (Lucene), with very long in-
verted lists for the semantic index items. GoNTogle [12]



combines full text with annotations which are searched sep-
arately and then combined, similarly as in [7]. Queries are
bags of words. There is no full ontology search and no
particular natural language processing. Faceted Wikipedia
Search [14] offers a user interface with similarities to ours.
However, the query language is restricted, there is noth-
ing comparable to our contexts but only a small abstract
per entity like in [19], and query processing is DB-based
and very slow, despite the relatively small amount of data.
SIREN (http://siren.sindice.com) provides an integra-
tion of pure ontology search into Lucene. How to combine
the then possible full-text and ontology searches is up to the
user of the framework. Finally, systems like [20] try to in-
terpret a given keyword query semantically and translate it
to a suitable SPARQL query for pure ontology search.

2.2 Systems for entity retrieval
Entity retrieval is a relatively recent line of research which

focuses on search requests and corresponding result lists cen-
tered around entities (instead of around documents, as in
traditional search). Since 2009, there is also a correspond-
ing Entity Track at TREC (http://ilps.science.uva.nl/
trec-entity). The tasks of this track are both simpler and
harder than what we aim at in this paper.

They are harder because the overall goal is entity retrieval
from web pages. The benchmark collections are only a part
of the web, but still very large. The ClueWeb09 collection
introduced at TREC 2009 is 25 TB of text. The relative
information content is low, however, as is typical for web
contents. Moreover, identifying a representative web page
for an entity is part of the problem.

To make the tasks feasible at all under these circum-
stances, the queries are relatively simple. For example, Air-
lines that currently use Boeing 747 planes.2 Even then the
tasks remain very hard, and, for example, P@10 figures av-
erage only around 30% even for the best systems [11].

Broccoli queries can be trees of arbitrary degree and depth.
All entities that have a Wikipedia page are supported. And,
most importantly, the query process is interactive, providing
the user with instant feedback of what is in the collection
and why a particular result appears. As we will see in Sec-
tion 7, this is key for constructing queries that give results
of high quality.

The price we pay is a more extensive pre-processing as-
suming a certain “cleanliness” of the input collection. Our
natural language processing currently requires around 2000
core hours on the 32 GB XML dump of the English Wikipedia,
see Section 7.3. And Wikipedia’s rule of linking the first
occurrence of an important entity in an article to the re-
spective Wikipedia article helps us for a high-quality entity
recognition; see Section 3.2.

Bringing Broccoli’s functionality to web search is a very
reasonable next step, but out of scope for this article.

2.3 Information extraction and pure ontology
search

Systems for pure ontology search have reached a high
level of sophistication. For example, RDF-3X can answer
complex SPARQL queries on the Barton dataset (50 million
triples) in less than a second on average [16].

2In our framework these are queries with two nodes and one
occurs-with edge.

As part of the “Semantic Web” effort, more and more data
is explicitly available as fact triples. The bulk of useful triple
data is still harvested from text documents though. The in-
formation extraction techniques employed range from simple
parsing of structured information (for example, many of the
relations in YAGO or DBpedia [2] come from the Wikipedia
info boxes) over pattern matching (e.g. [1]) to complex tech-
niques involving non-trivial natural language processing like
in our paper (e.g. [4]). For a relatively recent survey, see
[17].

Our work differs from this line of research in two impor-
tant aspects: (1) the full text remains part of the index that
is searched at query time; and (2) our system is fully inter-
active and keeps the human in the loop in the information
extraction process. This has the following advantage:

Ontologies are good for facts like which plants are native to
which regions, who was born where on which date, etc. Such
facts are easy to define and easy to extract from existing
data sources in large quantity and with high quality. And
once in the ontology, they are easily combinable, permitting
queries that would not work with full-text search.

But for more complex facts like our broccoli has edible
leaves, it is the other way round. They are easy to express
and search in full text, but tedious to define, include, and
maintain in an ontology. Let alone the problem of guessing
the right relation names when searching for them.

By keeping the full text, we can leverage the intelligence
of the user at query time. The query Plant — occurs-with —
edible leaves does not specify the type of the relation between
the occurrence of the plant and the occurrence of the words
edible and leaves. Yet a moment’s thought reveals that it is
quite likely that a context matching these elements gives us
what we want. Similarly as in full-text search, there is often
no need to be overly precise in order to get what you want.
And just like the result snippets in full-text search, Broc-
coli’s result snippets provide instant feedback on whether
the listed plant is really one with edible leaves.

Finally, if the extraction of more complex information is
desired nevertheless, Broccoli can be a useful tool for inter-
actively exploring the collection with respect to the desired
information, and for formulating appropriate queries.

2.4 Systems for question answering
Question answering (QA) systems provide similar func-

tionality as our semantic full-text search. The crucial dif-
ference is that questions can be asked in natural language,
which makes the answering part much harder. The system
is burdened with the additional and very complex task of
“translating”, in one way or the other, the given natural lan-
guage query into a more formal query or queries that can be
fed to a search engine and / or a knowledge database.

The perfect QA system would obviate the need for a sys-
tem like ours here. But research is still far from achieving
that goal. All state-of-the-art QA systems, including the big
commercial ones, are specialized to quite particular kinds
of question. For example, Wolfram Alpha works perfectly
for Which cities in China have more than 10 million in-
habitants, but does not work if more is replaced by less or
China by Asia, and does not even understand the question
Which plants have edible leaves. IBM’s Watson was tuned
for finding the single most probable entity when given one of
the (intentionally obscured) clues from the Jeopardy! game.
And both of these systems lack transparency: it is hard to
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predict whether a question will be understood correctly, it
is hard to understand the reasons for a missing or wrong
answer, and there is no possibility of interaction or query
refinement.

For our semantic full-text search both the query language
and the relation between a given query and its result are
well-defined and maximally transparent to the user; see the
discussion in Section 2.3. The price we pay is query formu-
lation in a non-natural language. The success of full-text
search has shown that as long as the language is simple
enough, it can work.

3. INPUT DATA AND NATURAL LANGUAGE
PRE-PROCESSING

3.1 Input data
Broccoli requires two kinds of inputs, a text collection and

an ontology. The text collection consists of documents con-
taining plain text. The ontology consists of typed relations
with each relation containing an arbitrary set of fact triples.
The subjects and objects of the triples are called instances.
Each instance belongs to one or more classes. The classes
are organized in a taxonomy which forms a tree; the root
class is called Entity.

3.2 Entity recognition
The first step is to identify mentions of or referrals to

instances from the ontology in the text documents. Consider
the following sentence, which will be our running example
for this section:

(S) The usable parts of rhubarb, a plant from the Polygo-
naceae family, are the medicinally used roots and the edible
stalks, however its leaves are toxic.

Both rhubarb and its refer to the instance Rhubarb from
our ontology, which in turn belongs to the classes Plant and
Vegetable (among others).

Our entity recognition on the English Wikipedia is sim-
plistic but reasonably effective. As a rule, first occurrences of
entities in Wikipedia documents are linked to their Wikipedia
page. When parsing a document, whenever a part or the full
name of that entity is mentioned again in the same section
of the document (for example, Einstein referring to Albert
Einstein), we recognize it as that entity.

We resolve anaphora in an equally simplistic way. Namely,
we assign each occurrence of he, she, it, her, his, etc. to the
last recognized entity of matching gender3. We also recog-
nize the pattern the <class> as the entity of the document
if it belongs to <class>, for example, the plant in the doc-
ument of Broccoli.

Our results in Section 7.6 suggest that, on Wikipedia,
these simple procedures give already a reasonable accuracy.

3.3 Natural language processing
The second step is to decompose document texts into what

we call contexts, that is, sets of words that“belong”together.
The contexts for our example sentence (S) from above are:

(C1) rhubarb, a plant from the Polygonaceae family

(C2) The usable parts of rhubarb are the medicinally used
roots

3The YAGO ontology does not provide enough information
to tell male from female, but we can easily tell male/female
from neuter.

(C3) The usable parts of rhubarb are the edible stalks

(C4) however rhubarb leaves are toxic

This will be crucial for the quality of our results, because we
do not want to get rhubarb in our answer set when searching
for plants with edible leaves. Note that we assume here that
the entity recognition and anaphora resolution have already
been done (underlined words). Also note that we do not care
whether our contexts are grammatically correct and form a
readable text. This distinguishes our approach from a line
of research called text simplification [9] [15].

In the following, as in the example above, we will only
consider contexts that are part of a single sentence. Indeed,
after anaphora resolution, it seems that most simple facts
are expressed within one and the same sentence. The results
from our quality evaluation in Section 7.6 (error category
FN2 in Table 4) confirm this assumption.

Our context decomposition consists of two parts, each de-
scribed in the following subsections.

3.3.1 Sentence constituent identification (SCI)
The task of SCI is to identify the basic “building blocks”

of a given sentence. For our purposes various kinds of sub-
clauses and enumeration items will be important, because
they usually contain separate facts that have no direct re-
lationship to the other parts of the sentence. For example,
in our sentence (S) from above, the relative clause a plant
from the Polygonaceae family refers to rhubarb but has noth-
ing to do with the rest of the sentence. Similarly, the two
enumeration items the medicinally used roots and the edible
stalks have nothing to do with each other (except that they
both refer to rhubarb); in particular, rhubarb roots are not
edible and rhubarb stalks are not medicinally used. Finally
the part however its leaves are toxic needs to be considered
separate from the preceding part of the sentence. As will
become clear in the following, we consider these as enumer-
ation items on the top level of the sentence.

In general, sub-clauses can again contain enumerations,
some or all of which can again contain sub-clauses, and so
on. And vice versa. In practice the nesting level is one or
two for most sentences.

Formally, SCI computes a tree with three kinds of nodes:
enumeration (ENUM), sub-clause (SUB), and concatenation
(CONC). The leaves contain parts of the sentence and a
concatenation of the leaves from left to right yields the whole
sentence again. See Figure 3 for the SCI tree of the above
sentence.

We construct our SCI trees based on the output of a state-
of-the-art constituent parser. We use SENNA [10], because
of its good trade-off between parse time (around 35ms per
sentence) and result quality (see Section 7.6).

We transform the parse tree using a relatively small set
of hand-crafted rules. Here is a selection of the most im-
portant rules; the complete list consists of only 11 rules but
is omitted here for the sake of brevity. In the following de-
scription when we speak of an NP (noun phrase), VP (verb
phrase), SBAR (subordinate clause), or PP (prepositional
phrase) we refer to nodes in the parse tree with that tag.

(SCI 1) Mark as ENUM each node, for which the children
(excluding punctuation and conjunctions) are either all NP
or all VP.

(SCI 2) Mark as SUB each SBAR. If it starts with a word
from a positive-list (for example, which or who) define the



ENUM 

ENUM 

CONC 

SUB 
The usable parts 

of rhubarb 

a plant from the 

Polygonaceae family 

are 

the medicinally 

used roots 
the edible stalks 

however rhubarb 

leaves are toxic 

Figure 3: The SCI tree for our example sentence, af-
ter anaphora resolution. The head of the sub-clause
is printed in bold.

first NP on the left as the head of this SUB; this will be
used in (SCR 0) below.

(SCI 3) Mark as SUB each PP starting with a preposition
from a positive-list (for example: before or while), and all
PPs at the beginning of a sentence. These SUBs have no
head.

(SCI 4) Mark as CONC all remaining nodes and contract
away each CONC with only text nodes in its subtree (by
merging the respective text).

As our quality evaluation in Section 7.6 shows, our rules
work reasonably well.

3.3.2 Sentence constituent recombination (SCR)
In SCR we recombine the constituents identified by the

SCI to form our contexts, which will be the units for our
search. Recall that the intuition is to have contexts such that
only those words which “belong” together are in the same
context. SCR recursively computes the following contexts
from a SCI tree or subtree:

(SCR 0) Take out each subtree labeled SUB. If a head was
defined for it in (SCI 2), add that head as the leftmost child
(but leave it in the SCI tree, too). Then process each such
subtree and the remaining part of the original SCI tree (each
of which then only has ENUM and CONC nodes left) sepa-
rately as follows:

(SCR 1) For a leaf, there is exactly one context: the part of
the sentence stored in that leaf.

(SCR 2a) For an inner node, first recursively compute the
set of contexts for each of its children.

(SCR 2b) If the node is marked ENUM, the set of contexts
for this node is computed as the union of the sets of contexts
of the children.

(SCR 2c) If the node is marked CONC, the set of contexts
for this node is computed as the cross-product of the sets of
contexts of the children.

We remark that once we have the SCI tree, SCR is straight-
forward, and that the time for both SCI + SCR is negligible
compared to the time needed for the full-parse of the sen-
tences.

4. QUERY LANGUAGE
Queries to Broccoli are rooted trees with arcs directed

away from the root. The root is either a class or an instance.
There are two types of arcs: ontology arcs and occurs-with
arcs. Both have a class or instance as source node.4

Ontology arcs are labeled by a relation from the ontology.
The two nodes must be classes or instances matching the
source and target type of the relation. The class or instance
at the target node may be the root of another arbitrary tree.

For occurs-with arcs, the target node can be an arbitrary
set of words, prefixes, instances or classes. The instances
or classes may themselves be the root of another arbitrary
query. Example queries are given in Figures 1 and 2.

To give an example of a more complex query: in Figure 1
we could replace the instance node Europe by a class node
Location and add to it an occurs-with arc with the word
equator in its target node. The intention of this query would
be to obtain plants with edible leaves native in regions at or
near the equator.

For our definition of the answer set for a given query, we
refer to Section 5.3, which describes the (recursive) algo-
rithm for processing an arbitrary given query.

5. INDEX AND QUERY PROCESSING
It will be instructive to first consider how a standard in-

verted index can be used to process our semantic full-text
queries and why that approach is bound to be slow (Section
5.1). We will then describe our new index (Section 5.2) and
how it can be used for fast query processing (Section 5.3).

5.1 Index: straightforward approach
We first describe the straightforward realization of seman-

tic full-text search with an inverted index. For example, this
is the approach taken in [19] and [13], both using Lucene.

For each recognized entity (see Section 3.2), we simply
add an item to the index representing the meant entity. To
enable fast searches for classes of objects, we also need to
add, for each occurrence of an entity, an index item for each
class that object is in. For example, for each occurrence
of the entity Broccoli, we would add an index item for the
classes Plant and Vegetable as well.

For the English Wikipedia combined with the YAGO on-
tology, this simple approach will blow up the index size by
a factor of 2-3, which is tolerable. What becomes a per-
formance problem is that the inverted lists for some of the
newly introduced items become very long. For example, the
inverted lists for the class Person (which contains one item
per occurrence of a person anywhere in the text) has over
50 million index items for the English Wikipedia. Note that
queries for a person are indeed frequent, and that we indeed
need one index item per occurrence (and not just one per
document). Otherwise we could not specify co-occurrence
in the same context, which is key for our approach. Some
queries also involve the top-level class Entity, which contains
over 165 million index items.

Moreover, the kind of queries we support here require
more complex operations than just intersection on these in-
verted lists (like in ordinary full-text search). In [5], an addi-

4For queries with an instance at the root, at most one result
is returned: that instance (if the rest of the query matches).
These queries are still useful for browsing the evidence for
that particular hit.



tional database-style join operation is implemented. But de-
spite a highly optimized implementation, sub-second query
times could be achieved there only for queries involving
classes with relatively short inverted lists, like counties and
scientists; see [5, Section 7.1]. As we see in the following sec-
tion, our new index avoids inverted lists for instances and
classes altogether.

5.2 Index: our new approach
Our new index is based on two key ideas. The first idea

is taken from [6]: use inverted lists for prefixes instead of
words. This enables fast query suggestions.

The second idea, which is the main idea behind our new
index, is to have what we call context lists instead of inverted
lists. The context list for a prefix contains one index item
per occurrence of a word starting with that prefix, just like
the inverted list for that prefix would. But along with that
it also contains one index item for each occurrence of an
arbitrary entity in the same context as one of these words.
For example, consider the context the usable parts of rhubarb
are its edible stalks, with recognized entities underlined. And
let us assume that we have an inverted list for each 4-letter
prefix. Then the part of the context list for edib* pertaining
to this context (which has id, say, 14) would be

edib*:

... C14 C14 C14 ...

... #edible #Rhubarb #Stalk ...

... 1 1 1 ...

... 8 5 9 ...

The numbers in the first row are context ids. The # in the
second row means that not the actual entities (with capital
letters) or words are stored, but rather unique ids for them.
The third row contains the score for each index item, which
in our current implementation is 1 for most index items,
more than 1 for occurrences of an entity in its own docu-
ment, and 0 for “abstract” entities like Legume. The fourth
row contains the position of the word or entity in the re-
spective context. This is used for proximity search and for
highlighting the query elements in the result snippets. The
context lists are sorted by context id, and, for equal context
ids, by word/entity id, with entities coming after the words.

Relations are stored in the straightforward way, with one
index list per relation. For example:

native-to:

... #Okra #Broccoli #Rhubarb ...

... #Africa #Europe #Europe ...

... 1 1 1 ...

Again the # means that ids are stored, not the actual
entity names. The third row are the scores, which are all
1 in our current implementation. The list is sorted by the
second row, that is, by the target entity ids of the relation.
Since queries may use a relation in both directions, we also
store the reverse for each relation separately (with rows 1
and 2 switched, and then again sorted by the ids from the
second row). Technically, this is just another relation, for
example native-to (reversed).

5.3 Query processing with the new index
Recall from Section 4 that our queries are trees, where

each inner node is labeled by a class or instance. However,
in our internal query representation, each inner node is a

(distinct) free variable and the class/instance labels are re-
alized via additional relational arcs of the kind <var> is-a
<class> or <var> equals <entity>. The former is more
convenient for the user, while the latter is more convenient
for the description of our query processing algorithm in the
following, and also for its implementation.

The final result for a query is always a sorted list of entity
ids with scores, and so are intermediate results for subtrees
with a single variable as root. The intermediate result for
target nodes of occurs-with arcs are context lists as described
in Section 5.2. We process queries recursively as follows:

Ontology arcs

(QP 1) For each ontology arc compute the following sorted
list of entities, where R denotes the relation of the arc:

(QP 1.1) Recursively compute for the target node t (which
can be the root of an arbitrary query again) the result Et,
which is a sorted list of entity ids with scores.

(QP 1.2) Fetch the index list IR for the relation R, which is
sorted by target entity; see Section 5.2.

(QP 1.3) Compute the list ER of all entities x such that
(x, y) ∈ R for some y ∈ Et, via a straightforward intersection
of IR with Et. Since IR is sorted by target entity id, this
intersection can be computed efficiently in linear time.

Occurs-with arcs

(QP 2) For each occurs-with arc compute the following sorted
list of entities, where W = {w1, . . . , wk} denotes the set of
words or prefixes in the target node, and Z = {z1, . . . , z`}
denotes the set of entities or classes in the target node.

(QP 2.1) For each zi (which can be the root of an arbitrary
query again) recursively compute its result Ei, which is a
sorted list of entities.

(QP 2.2) For each wj , compute a context list Cj as follows.
In our index, we have a context list for each k-letter prefix,
for some fixed k ≥ 1. Let I be the context list for the length-
k prefix p of wj , or, if wj has length < k, for wj .

5 Scan
over I and for each context, write all index items matching
wj (whole-word or prefix match, depending on what was
specified in the query) to Cj , and if at least one item matches
append all entity index items from that context, too.

(QP 2.3) Intersect the C1, . . . , Ck, computed in step 2.2,
such that the result list C contains all index items (c, e)
where c is a context id that occurs in each of the C1, . . . , Ck,
and e is an entity that occurs in context c. Since the Ci are
sorted by context ids, this can be computed in time N · log k,
where N is the total number of index items in the C1, . . . , Ck.

(QP 2.4) Compute a subset C′ from C by keeping only those
index items from C with a context id such that the con-
text contains at least one entity from each of the E1, . . . , E`

computed in Step 2.1. This can be done in time linear in
|C| + |E1| + · · · + |E`|, by temporarily storing each Ei in a
hash map.

(QP 2.5) Extract all entities from C′, aggregate the scores of
all postings with the same id using summation and produce
a result list that is sorted by entity id.

5Words of length < k get a context list on their own, and
there are only single-word suggestions for prefixes of length
< k.



Combining the sub-results for each arc

(QP 3) Let E1, . . . , Em be the entity lists computed in steps
2 (one list per ontology arc) and 3 (one list per occurs-with
arc). The result list for the whole query is then simply the
intersection of the E1, . . . , Em, where the scores of index
items with the same entity id are again simply summed up.

Excerpts

Excerpts of the kind shown in Figure 1 are easily produced
from the intermediate context lists computed in (QP 2.3).
For each instance displayed to the user, we simply sum up
the scores of the matching index items and show the ones
with the highest sum.

6. USER INTERFACE
For a convincing proof of concept for our interactive se-

mantic search, we have taken great care to implement a fully-
functional and intuitive user interface. In particular, there
is no need for the user to formulate queries in a language
like SPARQL. We claim that any user familiar with full-
text search will learn how to use Broccoli in a short time,
simply by typing a few queries and following the various
query suggestions.

The introduction and screenshots (Figures 1 and 2) have
already provided a foretaste of the capabilities of our user
interface. Here is a list of further features. Due to the space
constraint, we mention only the most important ones:

(UI 1) Search as you type: new suggestions and results
with every keystroke. Very importantly, Broccoli’s sugges-
tions for words, classes, instances, and relations are context-
sensitive. That is, the displayed suggestions actually lead
to hits, and the more / higher-scored hits they lead to, the
higher they are ranked.

(UI 2) Pre-select of most likely suggestion: Broccoli knows
four kinds of objects: words, classes, instances, and rela-
tions. Depending on where you are in the query construc-
tions, you get suggestions for several of them. A new user
may be overwhelmed to understand the different semantics
of the different boxes. For that reason, after every keystroke
Broccoli highlights the most meaningful suggestion, which
can be selected by simply pressing Return; see Figure 2 and
the explanation in the caption.

(UI 3) Visual representation of query: At any time, the cur-
rent query is shown as a tree, with a color code for the var-
ious elements that is consistent with the suggestion boxes;
see Figures 1 and 2.

(UI 4) Change of focus / root: A click on any node in the
query tree will change the focus of the query suggestions
to that node. A double-click on any class or instance node
will make that node the root of the tree and re-group and
re-rank the results accordingly.

7. EXPERIMENTS

7.1 Input data
Our text collection is the text from all documents from the

English Wikipedia, downloaded from download.wikimedia.

org in September 2011. Some dimensions of this collection:
32 GB XML dump, 1.1 billion word occurrences, 165 million
recognized entity occurrences (see Section 3.2), and 153 mil-
lion sentences which we decompose into 290 million contexts
(see Section 3.3).

As ontology we use the latest version of YAGO from Oc-
tober 2009. We manually fixed 15 obvious mistakes in the
ontology (for example, the noble prize was a laureate and
hence a person), and added the relation Plant native-in Lo-
cation for demonstration purposes. Altogether our variant
of YAGO contains 2.6 million entities, 17,661 classes, 23 re-
lations, and 26 million facts.

We remark again that, in principle, our approach works
for any given text collection, and for any given ontology.
It is just that we currently use a relatively simplistic en-
tity recognition tuned for Wikipedia; see Section 3.2. This
could, however, be replaced by any other high-quality entity
recognition.

7.2 Computing environment
The code for the index building and query processing is

written entirely in C++. The code for the query evaluation
is written in Perl, Java, and C++.

The full parse using SENNA (see Section 3.3) was run in
parallel on 20 high-CPU instances on Amazon EC2, at a
cost of around $US 200. The remaining parts of the index
construction and all performance tests were run on a single
core of a Dell PowerEdge server with 2 Intel Xeon 2.6 GHz
processors, 96 GB of main memory, and 6x900 GB SAS hard
disks configured as Raid 5.

7.3 Pre-processing times and space usage
Basic parsing of the Wikipedia with our simple entity

recognition and anaphora resolution (Section 3.2) takes around
one hour. The parallelized full parse using SENNA (see
above) takes around 12 hours. The SCI / SCR (Section 3.3)
takes around five hours when not parallelized. Going from
there, building the index lists (Section 5.2) takes another
three hours.

Our index is kept in three separate files. The file for the
context lists (Section 5.2, first part) has a size of 42 GB. The
total number of postings is 2.8 as much as in a standard
full-text index. The file for the relation lists (Section 5.2,
second part) has a size of 1 GB. The file for the document
excerpts has a size of 73 GB, which could easily be reduced
to 51 GB by eliminating the redundant information the file
currently contains. Compression, which we currently do not
use anywhere, could reduce the size of these files further; see
Section 8.

7.4 Query times, hits
A central aspect of Broccoli is its interactivity. Table

1 provides the average response times for eight types of
queries: (Q1) full-text only, one word; (Q2) full-text only,
two words; (Q3) ontology only, one arc; (Q4) class occurs-
with one word; (Q5) class occurs-with two words; (Q6) on-
tology arc + occurs-with word; (Q7) ontology arc + occurs-
with word and class; (Q8) ontology arc + occurs-with word
and (class occurs-with one word).

We synthetically generated 1,000 queries for each type.
For each query, we select each word or class as follows, start-
ing from the root. Pick a random prefix of length 2, and
consider Broccoli’s top suggestions for the query build so
far (top 30 for words, top 5 for classes). Note that each of
these suggestions will give a non-empty result set. Pick a
random one of those suggestions. If no suggestion exists,
try a different random prefix. If 10 such attempts fail, start
again from the root for that query.

download.wikimedia.org
download.wikimedia.org


Query type av-time read agg filter i+m+r

text-only 1 135ms 43ms 22ms 29ms 35ms

text-only 2 179ms 106ms < 1ms 53ms 10ms

onto-only 2ms 1ms < 1ms < 1ms < 1ms

onto+text 1 89ms 28ms 11ms 44ms 1ms

onto+text 2 112ms 69ms 14ms 31ms 5ms

onto+text 3 57ms 19ms 10ms 25ms < 1ms

onto+text 4 119ms 41ms 3ms 60ms 1ms

onto+text 5 161ms 63ms 13ms 75ms 1ms

Table 1: Average query times for eight types of
queries supported by Broccoli. Columns 3-6 pro-
vide a breakdown by sub-procedure; see the text.

The times reported in this table are for computing and
showing the hits, that is, the contents of the large box on
the right in Figure 1.

We observe that the average query times are around 100ms
and that the bulk of the query time is spent in read ing lists
from the index. The other three columns provide the times
for score aggregation (in QP 2.5 and QP 3 from Section 5.3),
filtering (in QP 2.2 and QP 2.4), and intersection, merging
and ranking of result lists (in QP 2.3 and QP 2.5).

7.5 Query times, suggestions
Table 2 provides the times for the various suggestion boxes

to appear in response to a single query (recall the example in
Figure 2 and see Section 6). We differentiate here between
four kinds of stations in the query formulation process: (S1)
type something in the beginning; (S2) type something to add
an arc, refine a class, or restrict to an instance; (S3) type
something to add something to the target node of an ontol-
ogy arc; (S4) type something to add something to the target
node of an occurs-with arc. We take the queries from classes
(Q3) and (Q4) above, respectively, and type the respective
element from left to right, starting with a prefix length of 3
for entities and 4 for words. Note that suggestions for more
complex queries (Q5-8) would be faster not slower, because
the results sets are smaller.

The table shows that only the word suggestions cost sig-
nificant time, and that that time is used mainly for reading
index lists and f iltering, see above.

Station prefix-len 3 prefix-len 4 prefix-len ≥ 5

beginning < 1ms < 1ms < 1ms

add arc 4ms 4ms 4ms

onto node 1ms < 1ms < 1ms

occw node —
93ms 73ms

(r44%,f54%) (r58%,f39%)

Table 2: Average time for query suggestions for four
different stations in the query formulation process,
and for different prefix lengths.

7.6 Result quality
For our quality evaluation, we considered two benchmarks.
Our first benchmark are the topics and relevance judge-

ments from the TREC 2009 Entity Track [3]. This track
worked with the ClueWeb09 collection. We removed all rel-

evance judgements for pages that are not in the English
Wikipedia; this approach was taken before in [8] as well.
This leaves us with 15 queries with a decent number of rel-
evance judgements.

Our second benchmark is a random selection of ten of
Wikipedia’s over 70,000 manually compiled en.wikipedia.

org/wiki/List_of_... pages: (WL1) plants with edible
leaves; (WL2) drug-related deaths; (WL3) jazz musicians;
(WL4) computer-animated films; (WL5) actors who played
a president of the US; (WL6) nominees for Oscar for best
actress; (WL7) oil-producing states; (WL8) unions associ-
ated with the AFL-CIO; (WL9) films set in New York City;
(WL10) doping cases in sport.

These lists are compiled by humans, but actually they are
answers to semantic queries, and therefore perfectly suited
for a system like ours. Our ground truth for each list is the
list of all entities on the Wikipedia page, with two kinds
of entities taken out. First, entities which are not in our
ontology (YAGO). Second, entities for which a very general
and reasonable full-text query (for example, <person name>
jazz for WL3) leads to zero hits. In total, about 30% of the
entities in the 10 Wikipedia lists were unfindable in this way.

We first investigated the difference between using Broc-
coli with co-occurrence on the trivial sentence level and on
the level of our contexts (see Section 3.3). Table 3 shows
that by using contexts, the (large) number of false-positives
decreases by a factor of about 2 at the price of an increase
in the (small) number of false-negatives by about the same
factor.

TREC Wikipedia

#FP #FN #FP #FN

sentences 392 12 18.551 218

contexts 153 24 11.056 364

Table 3: Broccoli on sentences vs. on contexts.

We manually investigated the reasons for about 500 of
these false-positives and false-negatives. We defined the fol-
lowing error categories. For false-positives: (FP1) the words
in the context have a different meaning than what was in-
tended by the query; (FP2) a true hit which was missing
from the ground truth; (FP3) due to an error in the ontology ;
(FP4) a mistake in the entity recognition; (FP5) a mistake
by the parser. (FP6) a mistake in our context decomposition.
For false-negatives: (FN1) the query elements randomly co-
occur somewhere in a paragraph, but actually there seems
to be no evidence for this entity in the Wikipedia; (FN2)
the query elements are spread over two or more contexts;
(FN3) a mistake in the ontology ; (FN4) a mistake in the
entity recognition; (FN5) a mistake by the parser ; (FN6) a
mistake in our context decomposition. Table 4 provides the
percentage of errors in each of theses categories.

The first thing that catches the eye is that over 60% of the
false-positives turned out to be true hits that were missing
from the ground truth, for both benchmarks. 12-14% are
due to FP4: mistakes in our (simplistic) entity recognition.
And 13-19% are due to FP3: the query elements do co-occur
in a context but the meaning is not what we intended.

The good news about the false-negatives is the percentage
for FN2. These are the results which we lose, no matter
how perfect our ontology, entity recognition, and SCI+SCR

en.wikipedia.org/wiki/List_of_...
en.wikipedia.org/wiki/List_of_...


#FP FP1 FP2 FP3 FP4 FP5 FP6

Wiki 253 19% 61% 7% 12% 1% 0%

Trec 107 13% 60% 4% 14% 8% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6

Wiki 158 33% 11% 10% 14% 9% 18%

Trec 24 8% 8% 29% 17% 17% 21%

Table 4: Breakdown of errors by category for the
false-positives (above) and the false-negatives (be-
low), and for each of our two benchmarks separately.

are. For both collections it is only around 10% of the false-
negatives. This suggests that context decomposition has
the potential for drastically reducing the number of false-
positives (see Table 3), without compromising recall much.

FN1 is due to lack of evidence in the collection and FN3
is due to ontology errors, two aspects which we cannot do
much about here. FN6 means that the query elements did
co-occur in a context according to our definition, but our
SCI+SCR did not correctly decompose the respective sen-
tence. So further improving our context decomposition is a
worthwhile direction for future research.

Table 5 provides quality measures for our two benchmarks
under three conditions: (1) with the original ground truth
(unfindable entities already taken out, see above); (2) with
the entities from FP2 (missing) added to this ground truth;
(3) with the errors leading to FP1, FP4, FN3, FN4 corrected.

TREC 2009 P@10 R-Prec MAP P@100

original 0.51 0.60 0.34 0.46

+missing 0.67 0.68 0.42 0.63

+corrections 0.72 0.75 0.52 0.70

Wikipedia P@10 R-Prec MAP P@100

original 0.62 0.42 0.28 0.46

+missing 0.81 0.62 0.44 0.68

+corrections 0.88 0.75 0.60 0.80

Table 5: Quality measures in three scenarios.

With respect to the original ground truth, our three precision-
at figures are all around 0.5. This is comparable to the
results reported in [8, Table 10] for the best run from the
TREC 2009 Entity Track when restricted to the English
Wikipedia. When adding the missing entities to the ground
truth, precision increases dramatically (especially for Wiki-
pedia). And by fixing avoidable errors that occurred to us
in the query evaluation, the precision values climb to 70%
and more.

8. CONCLUSIONS AND FUTURE WORK
We have presented Broccoli, a search engine for the inter-

active exploration of combined text and ontology data. We
have described the index, the natural language processing,
and the user interface behind Broccoli. And we have pro-
vided evidence that Broccoli is indeed fast and easy to use,
and that it gives search results of good quality.

So far, we have implemented all the basic ideas we deemed
necessary to provide a convincing proof of concept. But
there is much room for improvement and future work: (1)
the query processing could be optimized in a number of
ways; (2) clever caching strategies have the potential to fur-
ther improve query times significantly; (3) improve on the
entity recognition and anaphora resolution; (4) a smarter
ranking; (5) evaluate Broccoli on a larger, web-like collec-
tion; (6) efficient high-quality SCI+SCR without the need
for an expensive and error-prone full parse; (7) integrate sim-
ple inference heuristics to reduce the number of FN2-type
errors; (8) a user study of our UI and the whole system.
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