
Masterarbeit

On Compact Representation and
Robustness of Transfer Patterns in
Public Transportation Routing

Jonas Sternisko

27. März 2013

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät

Institut für Informatik

Work period
October 2012 – March 2013

Supervisor
Prof. Dr. Hannah Bast
Prof. Dr. Christian Schindelhauer

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I hereby also declare, that my thesis has not been prepared for another
examination or assignment, either wholly or excerpts thereof.

Abstract

Transfer pattern routing is a state-of-the-art routing algorithm for public transporta-
tion. It allows to answer multi-criteria shortest path queries within a few milliseconds.
The algorithm is based on an expensive precomputation of shortest paths between
stations. This thesis examines two aspects of transfer pattern routing. The first
objective is to find a compact representation of the transfer patterns. We detect
redundancy in the transfer patterns and present novel ways to store the information
within less memory. The second objective is to analyze the robustness of the transfer
patterns towards delay and to answer the question whether the patterns still allow for
optimal routing, if the underlying network changes. We address the second question
by introducing a framework to evaluate the robustness in networks with different
delay scenarios and we present experimental results indicating that transfer patterns
are quite robust.

Zusammenfassung

Transfer Pattern Routing ist gegenwärtig einer der effizientesten Algorithmen zur Su-
che von kürzesten Wegen im öffentlichen Personenverkehr. Das Verfahren basiert auf
einer aufwändigen Vorberechnung von kürzesten Wege in Verkehrsnetzen. Gegenstand
dieser Arbeit sind zwei mit dieser Information verbundene Problemstellungen. Zum
einen wird untersucht, wie die Größe der berechneten Information minimiert werden
kann. Wir entwickeln neue Möglichkeiten die Information der Transfer Patterns
kompakt darzustellen und in weniger Speicher abzubilden. Zum anderen wird die Ro-
bustheit der berechneten Transfer Patterns untersucht und eine Antwort auf die Frage
gegeben, ob deren Information auch unter Echtzeit-Veränderungen des zugrunde
liegenden Netzwerkes noch Gültigkeit besitzt. Wir stellen ein Framework vor, mit dem
die Robustheit des Algorithmus untersucht werden kann und präsentieren Ergebnisse,
welche die Robustheit von Transfer Patterns belegen.

Acknowledgments

I wish to thank, first and foremost, my Professor Hannah Bast for supervising this
thesis. Her outstanding lecture on “Efficient Route Planning” awoke my interest in
route planning algorithms in the first place and her helpful advice during the course
of this project pushed ahead this work. No less I appreciate Professor Christian Schin-
delhauer’s agreeing to review this thesis as second supervisor.
Furthermore, I thank my proofreaders Leticia Pfeifer and Manuel Braun for all their
help in fine-tuning this text. I would like to thank Mirko Brodesser for the helpful
exchange of ideas we had in the last six months.
Last but not least, I wish to thank Carolin Baer for mentally supporting me and
respecting the increased workload during the last weeks.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

2 Routing with Transfer Patterns 5
2.1 Graphs, Shortest Paths and Dijkstra’s Algorithm 5
2.2 Modeling Timetable Data As Graph 6

2.2.1 General Transit Feed Specification GTFS 6
2.2.2 Time Expanded Graph . 7
2.2.3 Walking between Stations . 8
2.2.4 Location-to-Location Queries 9
2.2.5 Used Datasets . 9

2.3 Shortest Path Problem in Public Transportation 9
2.4 Transfer Pattern Routing . 12

2.4.1 Computing Transfer Patterns 12
2.4.2 Exploiting Optimal Transfer Patterns for Search 16
2.4.3 Heuristics . 17

3 Compact Representation of Transfer Patterns 19
3.1 A Less Informed Approach: First-Transfer Routing 19

3.1.1 Idea . 19
3.1.2 Implementation . 21
3.1.3 Results . 22

3.2 Reducing Redundancy in Directed Acyclic Graphs 23
3.2.1 Isomorphic Reductions . 24
3.2.2 Shared Entry-Points . 25
3.2.3 Joint DAG . 26

3.3 Further Ideas . 29
3.4 Results . 29
3.5 Summary . 35

4 Robustness of Transfer Patterns 37
4.1 Transfer Patterns and Real-Time Updates 37
4.2 Measuring Robustness . 37
4.3 Modeling Delay . 38
4.4 Experiments . 39

i

5 Conclusion 47
5.1 Compact Representation of Transfer Patterns 47
5.2 Robustness of Transfer Patterns . 48

Bibliography 49

1 Introduction

1.1 Motivation

In the recent past, mobility has become more and more important. People travel
over long distances much more often than 20 years ago. This evolution went in
parallel with the evolution of public transportation networks: The world-wide area
served with public transportation grows and services become increasingly flexible and
fine-grained. High-speed or local trains, subways, trams and buses of various sizes
serve areas with capacity and frequencies adapting to the customers’ needs. Journeys
often lead the traveler to territory previously unknown to him. The growing spread of
mobile devices in the last years increased the demand for route planning applications
for public transportation. Such applications have to respond to thousands of queries
per second. Thus, the answer to a single query has to be found within very short
time.
From a computer scientist’s point of view, finding shortest paths in public trans-
portation networks differs from road networks, where efficient algorithms have been
developed during the late 90’s and early 00’s. The reasons lay within the different
structure of the underlying networks and the fact that the quality of a route is
not only determined by its duration, but also by the total fare and the number
of transfer. Hannah Bast et al. introduced transfer pattern routing [2], which
allows to find multi-criteria shortest paths in real-time even for huge transportation
networks.
A transfer pattern of a connection is the sequence of stations where the transportation
vehicle is changed. For example, traveling from Freiburg to Munich by train is either
possible by taking an ICE with one transfer at Karlsruhe or with a series of local trains
with transfers in Titisee and Ulm. Furthermore, there is a direct bus between the
two cities. The transfer patterns for this connection are Freiburg–Karlsruhe–Munich,
Freiburg–Titisee–Ulm–Munich and Freiburg–Munich.
In short, the algorithm exploits the observation that optimal paths between two
places, independent of the departure time, always follow a limited set of optimal
transfer patterns. Once these patterns are determined, queries for shortest paths
can be answered in a few milliseconds. The algorithm has two key components: The
computation of the optimal transfer patterns and a data structure for efficient answer
of direct connection queries. Transfer pattern routing works well for realistic public
transportation routing. For example, it is employed by Google Transit. However, it
has some important drawbacks.

1

Chapter 1 Introduction

One critical aspect is to represent the transfer patterns within a compact data
structure. Unlike personal navigation devices for route planning in road networks,
this information has a size such that it has to be provided by a server responding to
queries from remote clients. The size of the patterns plays a role for the required
hardware and cost of the route planning system. It is also important for access
speed: Small data can be cached efficiently, which increases the overall performance
of the search. Furthermore, current research tries to apply transfer pattern routing
for more complicated, namely multi-modal shortest path problems. Here, a shortest
path has to be found in a graph representing more than one mode of transportation
and there is a higher order of variation among the shortest paths. Thus, there are
more optimal paths between two places and so the amount of information increases.
Finding a more compact representation for the transfer patterns is the first objective
of this thesis.

An even more crucial problem of the algorithm is the time-consuming precomputation
to discover the optimal transfer patterns in a transit network. Computing the transfer
patterns every time the underlying timetable data changes is impracticable. But in
reality, timetables are never met with perfection: There is always delay, because of
traffic jams, maintenance of tracks or other reasons. Given a steady flow of real-time
updates to the transit data, it is questionable if transfer pattern routing still allows
for optimal responses. The second aspect this thesis addresses is about an important
property of transfer patterns–robustness: Does transfer pattern routing, once the
patterns are computed, correctly answer shortest path queries in the presence of
real-time updates to the transit network?

This introduction is followed by an overview about research related to this the-
sis. In chapter 2 we describe transfer pattern routing and our implementation in
detail. Thereafter, we present different approaches and results for a more con-
cise representation of transfer patterns in chapter 3. Afterwards chapter 4 reports
about our investigations on the robustness of transfer patterns. The text concludes
by a summary of our results and an evaluation of their relevance and contribu-
tion.

This thesis has two different parts, because during research on the first topic we found
out that in the first publication on transfer pattern routing [2] some undocumented
improvement must have been applied in order to achieve the reported data sizes.
Considering this, the problem of the data size is just not as critical as it seemed to
when the work on this thesis started.

1.2 Related Work

Pyrga et al. [17] give an overview over common graph models for timetable in-
formation enabling Dijkstra-based routing in public transportation networks. The
authors compare two important graph representations, namely the time-expanded

2

1.2 Related Work

and the time-dependent graphs. Hannah Bast [1] describes the differences between
route planning in road networks and for public transportation and why the latter is
harder.
The notion of transfer patterns has been introduced by Hannah Bast et al. in 2010 [2].
The authors explain the basic principle of answering queries based on precomputed
information. They describe a fast algorithm to answer direct connection queries
using timetable information. The precomputation of transfer patterns is explained
and various heuristics to make it feasible are presented, most notably the notion
of hub stations. The authors show how to answer shortest path queries using the
precomputed data and the direct connection query algorithm in a few milliseconds.
An analysis of the computational effort of the precomputation, of the size of the
computed data and of the query times is provided. Robert Geisberger, one of the
authors, presents a more detailed description of the underlying techniques in his
PhD thesis [10]. He analyzes how walking between stations can be modeled in order
to allow for realistic routes. Furthermore, he elaborates the incorporation of hub
stations into the precomputation and search.
Recently, some surveys have been made how transfer pattern routing can be applied
for multi-modal route planning. In his master’s thesis, Manuel Braun studies route-
variations during the precomputation of transfer patterns [3]. He identifies some
reasons and suggests models and heuristics to decrease the variations. In another
(yet unpublished) master thesis, Mirko Brodesser approaches the problem with a
different model [4]. He tries to reduce the computational effort of the precomputation
by a combination of the road network with a flattened graph representing the
transportation network.
Graph and tree data structures play an important role in computer science. The first
part of this thesis is about graph compression. Efficient ways to represent graphs
have been discussed by Turán [21], Kannan et al. [13] and Jacobson [12]. The set of
transfer patterns can be seen as dictionary of words, which can be stored as a trie.
Indeed, the data structure used to store the patterns is similar to a trie. The graph
variant of this is known as Minimal Acyclic Finite State Automaton, for which Daciuk
et al. [6] introduced an algorithm to compress equal suffixes at construction time,
or Directed Acyclic Word Graph, for which Chrochemore and Vérin [5] proposed a
compact form.
The second part of this thesis investigates how an existing route planning algorithm
can handle stochastic delay. In his diploma thesis, Ben Strasser encounters the
problem of delay in transit networks from a different point of view [18]. He introduces
a stochastic algorithm which solves a minimum expected arrival time problem and
suggests reliable alternative routes.

3

2 Routing with Transfer Patterns

This thesis contributes to the knowledge about transfer pattern routing in two ways.
Before we introduce the actual advances, this chapter elaborates the foundations of
transfer pattern routing and our implementation, which is required to comprehend
the remainder of this document. In the following, we give fundamental definitions
for route planning in general. As the chapter proceeds, topics become more specific
to public transportation routing. Finally, we explain the components of transfer
pattern routing and details of our implementation.

2.1 Graphs, Shortest Paths and Dijkstra’s Algorithm

Graphs In this thesis graphs play an important role. We will later model timetable
information as a graph and we will store information in graphs. A graph G = (V,E)
is composed of a set of nodes or vertices V and a set of edges E. Each edge
e ∈ E connects two vertices e = (v1, v2), v1, v2 ∈ V . A graph is directed, if
(v1, v2) ∈ E ⇒ (v2, v1) ∈ E does not hold. A graph is cycle free, iff no sequence
of arcs (v1, v2), (v2, v3) . . . (vk−1, vk) with v1 = vk exists. A graph with these two
characteristics is called directed acyclic graph DAG. We refer to the edges of a
directed graph as arcs and denote the nodes connected by such an arc e as startpoint
e[0] and endpoint e[1]. In a weighted graph, edges have a certain weight or cost c(e)
associated to them. This cost can be scalar or vector-valued.

Shortest Paths A path between two nodes v1 and vn in a Graph G = (V,E)
is a sequence of nodes v1, v2, . . . , vn successively connected by arcs (vi, vi+1) ∈ E.
Likewise, a path can be seen as a sequence of arcs e1, e2, . . . , en such that each arc
starts from the node its predecessor pointed to: ei[0] = ei−1[1] for i = 1 . . . N and
e1[0] = v1 and en[1] = vn. The cost of a path is defined as the sum of the arc costs
along the path. The shortest path between two vertices vs and vt in a graph is a
path that starts at vs and ends at vt with costs less or equal to the costs of all other
paths between these two nodes.

Dijkstra’s Algorithm The problem of finding a shortest path in a graph with
non-negative edge weights was first solved by Edsger W. Dijkstra [8]. Starting at
a source node with distance 0 and distance ∞ for all other nodes, the algorithm

5

Chapter 2 Routing with Transfer Patterns

iteratively settles the node with the smallest tentative distance. The node’s outgoing
arcs are relaxed and the tentative costs of each connected node is updated with the
cost of the node being settled plus the cost of the respective arc. Unsettled nodes
with tentative costs other than ∞ are maintained in a queue. This is repeated until
either the target node is settled or the queue is empty. In the latter case, there is no
path from the source to the target node. The optimal path can be reconstructed by
storing a pointer from each node to its parent. The parent is the node which caused
the child node’s last cost update. The optimal path is extracted by traversing the
parent pointers from the destination.

In combination with an appropriate implementation of a priority queue, this algorithm
solves shortest path problems within time O(|E|+|V | log |V |) [9]. The term Dijkstra’s
algorithm commonly refers to that priority queue based implementation. It constitutes
the base for many path exploration and search algorithms to be covered later
on.

2.2 Modeling Timetable Data As Graph

After the basics, this section goes into more detail about the representation of
timetable information. We start by explaining GTFS, a common format specification
for timetable data. From this we create an intermediate representation, which we
will need again for the experiments on robustness in chapter 4. Then we explain our
graph model for public transportation networks. Finally, we extend this model to
allow for realistic routes.

2.2.1 General Transit Feed Specification GTFS

Since its publication the general transit feed specification has become the most
popular format to serve information on public transportation networks to routing
service providers [11, 20]. A GTFS-feed consists of multiple files. These define the
stations served by public transit and describe the routes between them by departure
and arrival times, frequencies, trajectories, service days and fare information. See
table 2.1 for an overview of the most important components of the specification.

In the remainder of the text a trip denotes the tour of one vehicle characterized by
a sequence of stops, i.e. stations where passengers get on or off. A line is a set of
trips which share the same sequence stops and do not overtake each other. For two
stations which are subsequent stops of a trip we say an elementary connection exists
between them.

From the GTFS data we create a meta representation. We set up a mapping between
trip ids, service activities and frequencies. We collect information about the stations

6

2.2 Modeling Timetable Data As Graph

Table 2.1: Important files of a GTFS-feed [11].

Filename Defines
agency.txt One or more transit agencies that provide the data in

this feed.
stops.txt Individual locations where vehicles pick up or drop off

passengers.
routes.txt Transit routes. A route is a group of trips that are

displayed to riders as a single service.
trips.txt Trips for each route. A trip is a sequence of two or more

stops that occurs at specific time.
stop_times.txt Times that a vehicle arrives at and departs from individ-

ual stops for each trip.
calendar.txt Dates for service IDs using a weekly schedule. Specify

when service starts and ends, as well as days of the week
where service is available.

...

Table 2.2: Example for intermediate timetable data.

tripA

stops s0 s1 s2 s3
times (−, 12:05) (12:30, 12:30) (13:00, 13:05) (13:15,−)

tripB

stops s4 s1 s7
times (−, 20:12) (20:17, 20:17) (20:35,−)

in the network and the subsequent arrival and departure times of each trip. Using
the mapping and the raw trip schedule we create a list of its stops and a list of
corresponding arrival and departure times for each trip. Table 2.2 gives an example
for this intermediate data. Based on this data, we construct the graph as described
below.

2.2.2 Time Expanded Graph

In order to use Dijkstra’s algorithm for shortest path search, the timetable information
contained in a GTFS-feed has to be modeled as a weighted graph. Pyrga et al.
[17] compare two different graph representations. In the time-dependent graph each
station is modeled by a node. There is an arc between two nodes if there is any
elementary connection between these stations. The arcs do not have fixed costs but
a special cost function which depends on the time for which the arc is traversed. In
this thesis, we focus on another model.

In the time-expanded graph as described in [17, 16] each departure and arrival event
along a trip is explicitly modeled as a node with an according time stamp. Thus,

7

Chapter 2 Routing with Transfer Patterns

there are arrival nodes and departure nodes for each stop of a vehicle at a station.
The successive nodes are connected with arcs of costs corresponding to the time
difference between the two events. Beside these two kinds of nodes, there are nodes
modeling transfers and waiting at a station. There is a transfer node with the same
time stamp for each departure node and connected to it with an arc of cost 0. All
transfer nodes of a station are connected to the next transfer node in time forming a
waiting-chain. Every transfer node corresponds to the decision-event “After waiting
until now, do I board the train that goes right now, or do I keep on waiting?”. To
model transfers from one vehicle to another, an arc connects each arrival node to a
transfer node shortly after. Usually, a traveler cannot instantly change from one train
to another. We model this with the difference between the arrival and the connected
transfer node not being shorter than a fixed transfer buffer. In our experiments, the
transfer buffer is 120 seconds.
To incorporate the travel time and the number of transfers into the cost function
each arc gets a tuple weight. The first component corresponds to the difference
of the timestamps of the adjoint nodes. The second component is called penalty.
Arcs from arrival to transfer nodes have a penalty of one. All other arcs have a
penalty of zero. An excerpt of the basic time-expanded graph is depicted in figure
2.1.
In order to decrease the size of the graph and accelerate the transfer pattern com-
putation, we remove departure nodes by redirecting incoming arcs to respective
successors [2].

2.2.3 Walking between Stations

To allow for realistic routing, transfers with walking from one station to another must
be possible. Imagine you get off a bus and the best connection to your destination
goes from the bus stop right on the other side of the street. Therefore you cross the
street and wait over there for the connection to arrive. In the basic time-expanded
graph presented above, there are no means to model such a direct transfer between
the two stations. The only way to arrive on the other side of the street would be an
awkward detour, where each change of vehicle involves just one station. If walking is
not taken into account, the routing application will suggest obscure routes to users,
which would certainly drive them away from using it. In order to give evidence for
realistic use-cases, experiments have to be conducted on a model which allows for
walking between stations.
We therefore maintain an additional walking graph with arcs between neighboring
stations. It is possible to walk from a station to each of its neighbors. Every arc has
the duration of walking as costs and penalty one, because walking corresponds to a
transfer. For the sake of a simple model, we take the straight line distance between
stations and assume a fixed speed of 5 km/h to compute the walking time. The
neighborhood of each station is limited to a fixed radius. Thereby, the out-degree of

8

2.3 Shortest Path Problem in Public Transportation

our graph is limited which is important for the running time of Dijkstra’s algorithm
in the upcoming computations.
During graph traversal, walking is only allowed from arrival to transfer nodes. When
expanding a label at an arrival node at station S and time tarr, the walking graph is
used to determine the first transfer node after tarr + walktime(S, T) + transfer buffer
for every neighbor T . The time difference between the two nodes and penalty 1
are used as weight for the relaxed virtual arc. To speed up the search we compute
and store the list of appropriate successor nodes for every arrival node. This does
not increase the graph size too strong for a neighborhood radius up to 1000 meters.
Hence, we prefer this instead of searching the successors during search. Figure 2.1
also shows such a shortcut walking arc.
This model implicitly forbids successive walking over multiple stations (so called
via-walking), because after walking from an arrival to a transfer node another vehicle
has to be boarded before a new walk becomes possible.

2.2.4 Location-to-Location Queries

In realistic routing applications shortest path queries are typically issued between
locations instead of stations. Let X and Y denote two locations. To model a query
X@t→ Y with our graph, we extend it with two stops at X and Y . The former has
one arrival node at time t, with outgoing arcs to the first transfer node of each neighbor
NX after time t + walk(X,NX). The latter has one transfer node with incoming
arcs from all arrival nodes of every neighbor NY with cost walk(NY , Y) respectively.
Every of these arc has penalty 0. A feasible path for a location-to-location query
starts at X and ends at Y .

2.2.5 Used Datasets

We conduct our experiments on four GTFS datasets of different size. Hawaii is
a medium-sized data set and contains both urban and rural areas. Detroit is a
medium-sized, mostly urban dataset with a good structure. Toronto and NYC
are large metropolitan transit networks with the latter being composed of many
datasets, both independent borough-wise and city-wide transit feeds. Table 2.3 gives
an overview of the examined datasets.

2.3 Shortest Path Problem in Public Transportation

Shortest path problems in graphs with scalar edge weights have been addressed
by many publications. There is a variety of fast algorithms finding shortest routes
on road networks, where the edge weight solely is the time of travel. In public

9

Chapter 2 Routing with Transfer Patterns

t1t

10:05

t1a

10:00

t1d

10:05

t1a

10:40

t2t

11:05

t4t

11:05

t2a

11:00

t2d

11:05

t2a

11:40

t4a

11:00

t4a

11:05

t3t

12:05

t3t

12:45

t3a

12:00

t3d

12:05

t3a

12:40

t3d

12:45

s1 s2 s3

0:05 0:35
0

0:0
5

0

0:0
5

0

0:0
5

1:00

1:
00

0

0:0
5

2:05

1:05
0:05 0:35

0:05 0:35 0:05

0:05

0:0
5

0

walking

Figure 2.1: Excerpt of the time-expanded graph with three stations and four trips
t1–t4. Dotted arcs denote transfers and have penalty 1. All other arcs have penalty
0. Walking is possible between s1 and s3 and takes seven minutes. Note that
the loosely dashed arc is virtual, it is not part of the graph. Courtesy of Manuel
Braun.

Table 2.3: Size of the GTFS data sets (after contraction of departure-nodes).

Dataset Hawaii Detroit Toronto New York City
#stations 3924 5770 10883 16765
#nodes 410K 405K 3.0M 4.6M
#arcs 820K 799K 6.0M 9.2M

10

2.3 Shortest Path Problem in Public Transportation

transportation the best connection is not necessarily the fastest route. Other criteria
like the number of transfers, the minimum time buffer when changing means of
transport or the total fare for a connection play an important role. In the following,
we extend the notion of shortest paths and their determination defined in section 2.1
to adapt with the models presented in section 2.2.

Multi-Criteria Shortest Paths For the arcs with tuple costs in the time-expanded
graph, we refine the notion of a shortest or optimal path. When comparing the costs
of two paths in that graph we have to take more than one component into account.
One solution would be to define a cost function that linearly combines all components
to a scalar value. This approach assumes fixed preferences about the importance
of the different components and would yield just one path optimally fulfilling these.
But users have varying opinions about what is best. Because of this, we take another
approach which allows multiple optimal solutions.
Consider n-tuples a, b ∈ Rn and let ai denote the i-th component of a. We say a
tuple a dominates a another tuple b in the Pareto-sense, a <P b, if at least one
component is less and no component is greater than the respective component of the
other:

a <P b ⇐⇒ ∃i : ai < bi ∧ ¬∃i : ai > bi a, b ∈ Rn, i = 1 . . . n
⇐⇒ ∃i : ai < bi ∧ ∀i : ai ≤ bi

Furthermore, we say a tuple a is Pareto-optimal within a set C if there is not any
other tuple a′ in C which dominates a:

a Pareto-optimal in C ⇐⇒ ¬∃a′ ∈ C : a′ <P a

Two tuples a and b are incomparable if both a 6<P b and b 6<P a. Note that
a set of tuples can have an arbitrary number of Pareto-optimal elements and
that all these are pairwise incomparable. For example, consider the set S =
{(20, 0), (30, 0), (24, 1), (10, 2)}. The tuples (20, 0) and (10, 2) are the Pareto-optimal
elements as they dominate all other elements, but are incomparable to each other
((20, 0) 6<P (10, 2) and (10, 2) 6<P (20, 0)). In the remainder we speak of labels instead
of tuples.

Multi-Label Dijkstra To solve the shortest path problem with multivariate costs, a
multi-criteria variant of Dijkstra’s algorithm [14, 16, 19, 15] is used. Instead of a single
tentative cost value, it maintains a set of labels for each node. From a single label
(0, 0) at the source it yields the set of Pareto-optimal costs to a target, representing
the optimal paths. For bi-criteria costs this is initially {(∞,∞)}. During its main
loop the algorithm settles labels instead of nodes and maintains Pareto-optimal

11

Chapter 2 Routing with Transfer Patterns

labels in the priority queue. The order, in which labels are settled, is determined by
a linear combination of the components. With each relaxation of an arc a label with
cost being the settled label’s cost plus the cost of the arc is inserted into the set at
the end point of the arc. All dominated labels are then removed from this set. This
variant of the algorithm terminates when all labels at the destination are settled
or the queue is empty. The optimal paths can be reconstructed by maintaining a
pointer from each label to its parent.

2.4 Transfer Pattern Routing

Now we have all the prerequisites for transfer pattern routing. Remember, a transfer
pattern denotes the sequence of stations along a journey where one boards, changes
or alights vehicles. Independent of the departure time, the optimal paths in public
transportation networks follow a limited set of optimal transfer patterns. The key
idea of the algorithm is that the optimal transfer patterns between stations describe a
restricted search space which is orders of magnitude smaller than the original search
space in the time-expanded graph. Given these optimal transfer patterns are known
and the cost for direct connections between stations can be looked up efficiently, a
fast search becomes possible.

This section gives a detailed explanation of the main components of transfer pattern
routing: In the beginning we explain how transfer patterns in a transit network are
computed. We show how these procedures have to be adapted for initial and final
walking in location-based queries and point out a critical pitfall. We then show how
fast direct connection queries work and how they are used during search. In the end
of the section we discuss important heuristics needed to make the computation of
transfer patterns practicable. Please note that all algorithms and data structures
mentioned in this section refer to the original publication on transfer patterns by
Hannah Bast et al. [2], if not stated otherwise.

2.4.1 Computing Transfer Patterns

Profile Queries To discover all optimal transfer patterns in a network, we use an
important property of Dijkstra’s algorithm. When settling an optimal label, every
label settled before is optimal too. So running Dijkstra from a single source station
until all Pareto-optimal labels are settled yields all optimal paths starting from that
station. We consider time of travel and number of transfers as cost criteria and run
Dijkstra’s algorithm from initial labels (0, 0), one at each transfer node of the source
station. In the following text we call such a transfer pattern exploring Dijkstra a
profile query.

12

2.4 Transfer Pattern Routing

Algorithm 2.1 Compute transfer patterns for a departure station S.
transfer_patterns(S)

1. Run an unlimited profile query from departure nodes of station S.
2. For each destination D reached from S, run arrival_loop(D).
3. Backtrack optimal labels selected by 2. to yield transfer patterns.
4. Create a DAG for these patterns considering prefixes starting at S.

end

Arrival Chain Algorithm After the multi-criteria Dijkstra terminates, the settled
labels at arrival nodes represent optimal paths to the respective station. But because
every arc in the time-expanded graph is on at least one optimal path [1], there are
suboptimal connections among these. Recall the example Freiburg to Munich. There
are also trains from Vienna to Munich. For each train arriving at Munich main station
there is an arrival node. As the profile query from Freiburg main station explores
the full network, all these nodes have at least one optimal label. But the connection
Freiburg–Vienna–Munich is always suboptimal. We perform a post-processing to
get rid of suboptimal paths. The arrival chain algorithm selects an optimal subset
among the arrival labels of a station S: For all distinct arrival times t1 < t2 < ... < tn
at S it selects a dominant subset in the set of labels consisting of (1) the labels
settled at time ti and (2) the labels settled at time ti−1 with duration increased by
the waiting time ti − ti−1, ties are broken in preference of (2).

Retrieval and Storage of Transfer Patterns From the selected subset the paths
to the departure station are backtracked using the parent pointers of the labels.
Reducing the paths to stations with boarding or alighting yields the transfer patterns.
In terms of nodes, these are the stations of the very first and last nodes, of every
transfer node where the predecessor is an arrival node and also of the arrival node,
if it is at a different station than the transfer node. All transfer patterns starting
at station A are stored in a DAG for A. This graph has three different types of
nodes: A single departure node (root node) representing the source station, for each
destination B reachable from A a unique destination node named B and for each
prefix AC1 . . . Ci in any transfer pattern AC1 . . . CkB a prefix node labeled Ci. The
set of transfer patterns from station A to destination B is represented by all paths
from the destination node for B to the root A.

Figure 2.2 shows an example for this data structure. In addition to each DAG,
there is a mapping which indicates the appropriate entry-point for every destination
reachable from the departure station. In our C++ implementation, this mapping
is a std::vector<std::pair<int,int>�>, with pairs of station id and node index.
The vector is sorted by ascending station ids and allows for lookup in O(log N) using
std::lower_bound. The DAG is implemented as a vector of station ids with an
adjacency list for every node. Listing 2.1 summarizes the full algorithm to compute
the transfer patterns from a source station.

13

Chapter 2 Routing with Transfer Patterns

A B

C

C D

D

E

TargetMap(A)
C : C
E : E

Figure 2.2: The DAG representing the patterns ’ABC’, ’ABE’, ’ABDE’ and
’ABCDE’. Note that beside destination nodes, every other node has at most one
outgoing arc. A map indicates the entry-point into the DAG for every reachable
destination.

Location-to-Location versus Station-to-Station The procedure described so far
computes transfer patterns between stations. Realistic routing applications are
queried for shortest paths between locations. Typical users accept routes which have
a walking portion in the beginning and end. In the following, we compute location-
to-location transfer patterns. One might suppose that this causes a significant
increase in the number of patterns. But actually computing such transfer patterns
requires the same number of profile queries and the number of distinct patterns
decreases.
The reason for the reduced number of patterns is this: When starting a journey
at a station it often makes sense to walk to another station in the beginning and
get a much faster connection there. If the patterns are computed such that each
path starts aboard a vehicle, awkward detours resulting in useless patterns are the
consequence. Avoiding this is an integral part of location to location queries: When
searching from a location as in section 2.2.4 the resulting paths begin with walking
to nearby stops where the best connection departs aboard a vehicle. We make use of
this and allow the profile queries to walk in the beginning and end, while all stored
transfer patterns start and end with riding a vehicle (with an exception explained in
section 2.4.3).
The pattern exploration search starting from (0, 0)-labels at all transfer nodes at
departure station S is extended: For each neighborN add initial labels (walk(S,N), 0)
at its respective transfer nodes. To solve the disadvantage of paths with final walking
to destinations as mentioned in section 2.2.3 the arrival chain algorithm of section
2.4.1 is extended to consider all arrival events in the neighborhood of the destination
T . The cost of all paths arriving at neighbor N are increased with time walk(N, T)
before considering them in the arrival chain.
Backtracked paths may now yield transfer patterns not only between the departure
and destination station, but between every possible combination of neighbors of
the two. For example, a profile query from ’Freiburg, Faculty of Engineering’ to

14

2.4 Transfer Pattern Routing

D

A B C

3h 2h 1h
5min 5min

(a)

D

A B C

3h 2h

1h

5min 5min
(b)

Figure 2.3: A setup where the shadowed initial (a) and final (b) walking problem
arises. Computation of transfer patterns without initial and final walking fails, if
not every dominating pattern is stored. Straight arcs denote direct connections.
Dotted arcs denote possible walking.

Freiburg main station may yield a pattern from ’Freiburg, Bärenweg’ to ’Freiburg
ZOB’, which are each within 1 km of the original departure and destination. Because
it is optimal for at least one other profile query, it is important to store that pattern
in the respective DAG, even though it may not be optimal for a profile query from
’Freiburg, Bärenweg’. Otherwise in the context of limited neighborhoods the shadowed
walking problem arises. Figure 2.3 depicts the setting in which this problem is present.
Assume a profile query from station s would only yield patterns starting from s
aboard a vehicle. Consider the connection A→ D, for which the direct connection
is dominated by a connection starting with walking to a neighbor station B. The
profile query from station A relies on a pattern starting at its neighbor B being found
by the profile query from that station, as the patterns of its neighbors will be used
to construct the query graph at search time. During the profile query from B, that
pattern is dominated by another pattern starting from station C, which is outside
the neighborhood of A. Consequentially neither the direct connection from A to D
nor the optimal connection with initial walking to B could be found. To avoid this
problem in general, a profile query from s has to return transfer patterns starting at
its neighbors, and these have to be stored in the DAG of the respective neighbor. A
similar problem exists for walking at the end of a journey.

These location-based computation of transfer patterns avoids artificial transfer
patterns. Thereby, the patterns become somewhat more homogeneous, as the artificial
are specific for every stop. With increasing radius for initial and final walking this
reduces the number of transfer patterns. Also, the model becomes more realistic.
However, not limiting the neighborhood radius renders the computation infeasible:

15

Chapter 2 Routing with Transfer Patterns

A B C D

D

E

Figure 2.4: Query Graph for the query A→ E constructed from the DAG in figure
2.2.

The out-degree of arrival nodes becomes too large. So one could argue for different
radii for initial, intermediate and final walking. But as the arrival chain takes the
whole neighborhood of every destination into account, the asymptotic runtime of the
precomputation would become cubic in the number of stations.

2.4.2 Exploiting Optimal Transfer Patterns for Search

Query Graph To answer a query from station S to station T a query graph is
constructed from the transfer patterns in the following way. The destination node
for T is searched in the transfer patterns DAG for S. If there is no such node, no
path between S and T exists. Otherwise let the current node in the DAG be u with
label U have k successors with labels V1 . . . Vk. Add arcs (Vi, U) for all i to the query
graph. Recursively repeat this for all successors of u. Figure 2.4 shows an example
for such a query graph.

Robert Geisberger extended this procedure for location to location queries [10]. For a
query X → Y let NX and NY be the neighborhood stations of the two locations. The
query graph is initialized with two nodes x and y with arcs (x,X ′) to all X ′ ∈ NX

and arcs (Y ′, y) from all Y ′ ∈ NY . Now the query graph can be constructed from the
patterns between station-pairs in NX ×NY . The construction of a query graph with
one departure and multiple destinations can be done simultaneously when starting
from the destination nodes for NY for each X ′. So the construction time just increases
by linear factor |NX | compared to the station to station version.

Direct Connection Queries The edges in the query graph correspond to direct
connections between stations. The only exception are the initial and final walking
arcs for location-to-location queries, for which the walking time can be stored in a
separate table. To search for shortest paths on such a graph quickly, an efficient
lookup data structure is required. The trips extracted from GTFS (see section 2.2.1,
table 2.2) are grouped to distinct lines and stored in a table.

16

2.4 Transfer Pattern Routing

lineA s4 s12 s7 ...
tripA,1 (−, 6:00) (6:10, 6:12) (6:20, 6:20) ...
tripA,2 (−, 6:30) (6:40, 6:42) (6:50, 6:50) ...
tripA,3 (−, 7:00) (7:10, 7:12) (7:20, 7:20) ...
...

For each station a list of incident lines and its position along the line is stored.

station incident lines with position
s1 (lineA, 0) (lineD, 7) (lineF , 3) ...
s7 (lineA, 2) (lineB, 4) (lineE, 2) ...
... ...

The query for a direct connection sA −→ sB@t is answered by intersecting the
incidence lists of sA and sB, determining lines which serve both stations and sA

before sB. For all such lines which stop at sA before sB, the first departure time
after t is looked up in the line’s table in column sA. If there is a trip departing after
that time, the difference to the arrival of the trip at sB is returned. In the example
above a query s1 −→ s7@6:25 would find the incident lineA with positions 0 and 2
and return a duration of 35min for the direct connection.
With this data structure a direct connection query can be answered within mi-
croseconds. For the search within the query graph, where each relaxation of an arc
corresponds to a direct connection query, this results in query times of only a few
milliseconds.

2.4.3 Heuristics

Knowing the optimal transfer patterns enables this routing algorithm to answer
shortest path queries very fast. Its main drawback is the time-consuming precompu-
tation of the patterns. The asymptotic runtime has at least quadratic dependency
on the size of the underlying network. For instance, computing the complete transfer
patterns for the New York City data set with 1.000 meters walking radius takes
about two weeks using 20 cores. The computation of the patterns for transit net-
works of the size of Northern America with the algorithm as described above is
infeasible. To shorten the computation time some heuristics have been successfully
tested [2, 10].

Important Stations During long range journeys typically at least one transfer
takes place at an important station, e.g. a large bus hub or the central train station of
a city. For the computation of transfer patterns this can be exploited such that only
profile queries from hub stations explore the full transit network and profile queries

17

Chapter 2 Routing with Transfer Patterns

from regular stations are limited until every path did a transfer at an important
station.
We change the algorithm 2.1 in two ways. For hub stations the procedure is extended
such that it explores also paths which begin with a transfer at the hub. On this
account, these global profile queries start from (0, 0)-labels at the arrival nodes
in addition to the labels at departure nodes. These new labels allow paths which
initially walk to neighbors of the hub. For profile queries from non-important stations
a flag for every label indicates whether the path to this label has transfered at a hub.
The search terminates as soon as all open paths did such a transfer. As an exception
to location-to-location routing forbidding patterns with final walking, local profile
queries may yield patterns terminated by walking to a hub.
Other implementations extend this termination criterion with paths that just traveled
through the important station. This forced transfer is resolved during query graph
construction by checking for a direct connection between the stops before and after
the hub [10, 2]. However, we did not pursue this last extension, as the decreasing
computation time was not the focus of this work.
The important stations are selected by running a limited number of Dijkstras from
random stations on a compressed variant of the graph. In this graph every station
has just one arrival and transfer node. Both nodes are connected to the arrival
node of every station which is connected by an elementary connection. Walking and
transfers are modeled by arcs from arrival to transfer nodes. The arc cost between
stations correspond to the fastest connection during the course of the day. After
each Dijkstra the number of transferring paths is counted for each station. The one
percent with the most transfers are selected as hub stations.

Limiting the Precomputation Further heuristics to shorten the computation time
of the transfer patterns limit the search space for profile queries. This is done by
setting maximum cost and penalty for paths. In the patterns we computed, paths
from non-hubs have penalty ≤ 3 (up to three transfers) and penalty ≤ 5 from hubs.
Although this reportedly improves the computation time a lot, we did not limit the
duration of paths within these limits as it decreases optimality.

A Note on Optimality With the heuristics introduced beforehand, the computation
of transfer patterns becomes feasible, however optimality is relinquished. Criticism
on transfer pattern routing often focuses on its partial suboptimality [7, 18]. No
results examining the correspondence between the heuristics and loss of optimality
have been published yet. The experiments in chapter 4 give some evidence to this
question.

18

3 Compact Representation of
Transfer Patterns

This chapter covers our results to the first objective of this thesis: A compact
representation of transfer patterns. In the first section we propose an algorithm
similar to transfer patterns, but less informed. In the remainder of the chapter
we analyze the structure of the DAGs representing transfer patterns as described
in the primary article [2] and introduce multiple methods to decrease the size of
the information. The chapter is concluded by comprehensive experimental results
proving the improvement of these techniques.

3.1 A Less Informed Approach: First-Transfer
Routing

3.1.1 Idea

One of the mechanisms that render transfer pattern computation feasible is the
concept of important stations. Remember section 2.4.3, where we computed patterns
up to the first hub. At query time the search space is reconstructed from the patterns
between the departure station, its hubs and the target station. Looking at the
exploration of the patterns from a source station A we observe that the optimal set
of hubs, which minimizes the computation time and the size of the DAG, is such that
every first transfer involves a hub. For example in the network sketched in figure
3.1, all paths from A to any other station have a first transfer at B or C. If B and
C were hubs and A was not, the pattern exploration would stop as soon as every
expanded path transfered for the first time.
If the number of important stations was unlimited, the local profile query for every
station could be minimized. Thereby the information size would become minimal,
too. From a hub station a global profile query must be computed. Because of this,
considering all stations as important is impractical. However, we observe that the
result of global profile queries always overlap: In the example, the patterns from B
to D are a superset of the patterns from A to D which start with a transfer at B
(despite the first station A).
Let FT (s, t) denote the stations where optimal paths from station s to t have their
first transfer and let TP(s, t) denote the optimal transfer patterns between s and t.

19

Chapter 3 Compact Representation of Transfer Patterns

B

A ... D

C

Figure 3.1: Motivation for first-transfer information. The nodes denote stations,
the arcs possible connections from and to each station. The set of hubs minimizing
the transfer patterns starting at A is {B,C}.

Then it holds
TP(s, t) ⊆

⋃
ft∈FT(s,t)

{s} × TP(ft, t)

In other words, when prepending s to all optimal transfer patterns between ev-
ery first-transfer station ft to t, then the optimal transfer patterns from s to t
are among these. Using this recursive formula, a superset of the search space in-
duced by the optimal transfer patterns can be constructed from the first-transfer
information.
To illustrate the idea in more detail, consider the initial example from Freiburg to
Munich. The optimal transfer patterns were Freiburg–Karlsruhe–Munich, Freiburg–
Titisee–Ulm–Munich and Freiburg–Munich. The set Karlsruhe, Titisee, Munich
contains all stations where optimal connections from Freiburg to Munich have the
first transfer. During query graph construction we add arcs from Freiburg to these
stations. Then, we look up the first transfers from Karlsruhe to Munich, which yields
the set Mannheim, Stuttgart, Munich. These stations are added to the query graph
as well and the procedure continues recursively with Titisee. At some point, all paths
in the query graph end in Munich.
The idea of first-transfer routing is similar to the principle of transfer pattern routing.
If the first transfers of all optimal paths in a network independent of the departure
time are known, a fast search on a restricted search space is possible. In contrast to
the original algorithm we do not store full transfer patterns but only the first transfers
along the optimal paths, thereby decreasing the size of the information. Because of
this, first-transfer routing is less informed than transfer pattern routing, suggesting
the search time is increased. In the following we explain how we explore and store
the first transfers. After that, we report about the results of first experiments with
this technique, indicating the different information size and search performance of
first-transfer and transfer pattern routing.

20

3.1 A Less Informed Approach: First-Transfer Routing

Station Transfers
{}

{A}

{B}

{A, B}
...

Walking Transfers
{(,)}

{(A,B)}

{(B,C)}

{(A,B), (B,C)}
...

TargetMap(E)

X : (1,0)

Y : (3,2)
...

TargetMap(D)

X : (1,1)

Y : (3,0)
...

Figure 3.2: The data structure storing first-transfer information. Unique sets of
transfers are separated into transfers at one station and those which include walking
between stations. For each departure station, a map indicates the two respective
fields which represent the first transfers to a destination.

3.1.2 Implementation

We adapt the algorithm computing optimal transfer patterns from chapter 2 to
yield the first transfers only. The specializations concerning location to location
queries with initial and final walking are directly embedded: The search is started
from labels with respective walking costs from a station and its neighbors and the
arrival loop algorithms takes additional labels at neighbors of each destination into
account. From the generated optimal paths we extract the set of first transfers to
every destination.
In a first experiment the first-transfer information just comprised a single stop. We
recognized that this algorithm was too poorly informed as to compete with full
transfer patterns in terms of query times. Transfers including walking between two
stations and those which transfer on-site have to be distinguished. Distinct sets of
first transfers are stored in an array for each type. Every departure-destination pair
maps to one entry in each of these. Figure 3.2 illustrates this data structure. Here,
to give an example, optimal paths from E to Y have their first transfer at station A,
station B or by walking from B to C.
We now explain how to construct the query graph between two stations from
this information. The construction for location to location queries is a straight-
forward extension in analogy to section 2.4.2. Starting with a queue containing
only the departure station, all first transfers to the destination are retrieved. The
query graph is extended with the respective arcs and the successors are added
to the queue. This procedure continues until every stop in the queue has been

21

Chapter 3 Compact Representation of Transfer Patterns

visited.

Note that the query graph may also be constructed at search time. Each settling of
a node in the graph adds the adjacent arcs using the first-transfer information and
updates the costs of the successors. The order of settlement follows the tentative
costs of the nodes. However, we did not pursue this further, as the query graph
construction takes only a fraction of the response time and so this would improve
the search time just slightly.

3.1.3 Results

This section contains experimental results on the behavior of first transfer routing.
We compare the output size and the query performance between routing with transfer
patterns and first transfers only.

Setup To get an overview of the utility of this approach, we compute the informa-
tion on the two smallest of the four networks described in section 2.2.5. We compare
the data size and the performance of the search between routing with full transfer
patterns TP and first transfers FT . The time expanded graph was generated for 26
and a half hours from 3:00 am to 5:30 am the next day, with a maximum walking
distance of 1000 meters. Like in the initial article [2] we select one percent of the
stations as hubs for the transfer patterns. Unlike the authors, we did not force paths
to transfer at hubs and had no limit on the time of travel. The paths were limited to
at most 3 transfers (4 legs) for local and 5 transfers for global profile queries. This
implies that paths with up to 8 transfers can be found by transfer pattern routing.
We adapted the computation limits for first transfers accordingly, to allow the new
variant of the algorithm to find paths of the same maximum length. Note that the
computation time is larger than for transfer pattern, as we have to run a global
profile query for every departure station.

Output Size At first we compare the size of the computed information. Table
3.1 summarizes the created data for transfer patterns using the basic DAG for
every station (see figure 2.2) and the first transfer information stored as explained
before. Indeed, the output sizes are smaller for first transfers, because on the one
hand the first transfers comprise less information and on the other hand, the data
can be stored efficiently with the employed data structure (figure 3.2). For both
data sets, the memory used for FT is about half as large. However, we think that
without introducing a heuristic similar to the important stations in section 2.4.3,
this advantage will vanish for large networks as the share of the entry-point maps
becomes larger. Because of the global profile queries the first transfers are always
known to almost every destination, while the transfer patterns are restricted to those
reachable within 4 legs.

22

3.2 Reducing Redundancy in Directed Acyclic Graphs

Table 3.1: Memory size of the computed information for transfer patterns (TP)
and first transfers (FT) in Byte.

Dataset TP FT
Hawaii@1000m 265.8M 123.2M
Detroit@1000m 588.3M 266.4M

Query Performance To get a first glimpse of the different performance of the
search with the two information types, we executed 10 000 random queries on the
different networks. While the increased time for the recursive construction of the
query graph did not have a large impact, it turned out that in general the query
graphs for FT are about twice as large as for TP. With the asymptotic complexity
of the search algorithm being quadratic in the size of the underlying network, it is
not surprising that the search is slower than for TP. So routing with FT cannot
compete with transfer pattern routing in terms if speed, nonetheless it is still orders
of magnitude faster than computing the Pareto-optimal paths using multi-label
Dijkstra.

Interpretation The first results demonstrated that routing with the information of
first-transfers instead of full transfer patterns is possible. The information can be
represented by more compact structures than the transfer patterns, at least for small
datasets. As the underlying network grows, first transfer routing suffers its main
disadvantage: It does not (yet) exploit any of the networks structure by such means
as important stations. Because of this the computation is more expensive than for
transfer patterns, were we distinguish local and global profile queries. As a matter
of fact, it is not very convenient to perform an expensive computation and then
discard most of the retrieved information. Due to larger query times and with the
advantage in information size being only marginal compared to techniques we present
hereafter, routing with first transfers seemed not promising enough to be pursued
further. However, the query graph constructed recursively from the first-transfer
information might provide for alternative routes when a direct connection along the
optimal transfer patterns becomes delayed. This may become of interest in chapter
4.

3.2 Reducing Redundancy in Directed Acyclic Graphs

The previous section discussed an approach that aims to reduce the information size
by using less information. As we could observe, the search speed suffers from the
reduced knowledge while the size of the data is not improved so much. Opposed to
that, we now present three techniques that reduce the size of the representation of
the transfer patterns while the information is maintained.

23

Chapter 3 Compact Representation of Transfer Patterns

A

B

C

D

D

E

E

F A

B

C

D E F

Figure 3.3: An example for subgraph equality. The DAG for the patterns ’ABDEF’
and ’ACDEF’ and the reduced DAG.

3.2.1 Isomorphic Reductions

Idea The DAG representing the transfer patterns is prefix-free, which means that
all equal prefixes of the contained patterns are represented by a path from the
same internal prefix-node to the departure-node. The DAG is thereby related
to a prefix-tree or trie, used to store a set of words by paths originating at the
root-node.

Consider the DAG for the patterns ’ABDEF’ and ’ACDEF’ in figure 3.3. Obviously
the two equal suffixes ’DEF’ are expressed by two separate branches. If we merge
the branches and let the node for ’D’ point to both ’B’ and ’C’, two nodes and two
arcs can be saved. The set of patterns represented by this more compact DAG is the
same.

Consider the set of transfer patterns in a network as dictionary. Dictionaries can
be represented as Directed Acyclic Word Graphs DAWG also known as Minimal
Acyclic Finite State Automata MA-FSA. For these data structures the same problem
of equal suffixes is given. There are different approaches to construct a compact
DAWG (Chrochemore and Vérin [5]) or compact MA-FSA (Daciuk et al. [6]).
Inspired by these works we implemented a top-down algorithm to find and remove
subgraph equality in the transfer pattern DAG. As the number of distinct transfer
patterns is not too large, we can decrease the size of the data structure after
construction.

Top-Down Algorithm Starting from the original DAG we construct the prefix-tree
representing all paths in reversed direction (i.e. starting at the departure-node). The
leafs of this tree correspond to the destinations. Figure 3.4 (b) shows this tree for
the DAG from the initial example.

Starting from the root we traverse the tree in preorder depth-first-search. Every
traversed node is the root of a subtree. Once we find a subtree equal to a subtree
visited before, we redirect the connection from its parent to the root of the formerly
visited subtree. Thereby, the current subtree is decoupled (c). The traversal continues
with the next unvisited node until the full tree has been processed. Then the compact
DAG is re-assembled from the pruned tree (d).

24

3.2 Reducing Redundancy in Directed Acyclic Graphs

A

B

D

E

C

D

E

F
(a)

A

B

D

E

F

C

D

E

F

1.

2.

3.

4.

5.

6.

7.

(b)

A

B

D

E

F

C

D

E

F

7.

(c)

A

B

D

E

C

F
(d)

Figure 3.4: From the DAG (a) the inverse tree is constructed and traversed via
preorder DFS (b). The small ordinary numbers denote the order of visited nodes.
In the 7th step a subtree equal to step 3 is found and decoupled (c). In the end,
only subtrees connected to the root form the improved DAG (d).

To compare subtrees efficiently, we compute a hash value for every node and store it
in a table. The hash value of a node is a combination of its station id and the hash
values of all its children. Due to this recursive formulation, the hash values can be
computed in linear time bottom-up for all nodes of the tree. Only when two subtrees
have the same hash value they are compared node by node in order to resolve hash
collisions.

This algorithm efficiently removes duplicates of equal suffixes among the transfer
patterns. For instance, compressing the 380 million transfer patterns for New York
City takes about 5 minutes. The resulting DAG is free of redundant prefixes and
suffixes. Note that unlike in the original data structure, an internal node may have
more than one outgoing arc in this graph. The query graph construction from chapter
2.4.2 has to be extended such that every node of the transfer pattern DAG is visited
just once, otherwise the query graph may have duplicate arcs. This can be achieved
by maintaining a mark for each node.

This algorithm removes redundant substructures from a DAG and shrinks the data
without loss of information. Before we present results for this compression, we will
introduce some further mechanisms.

3.2.2 Shared Entry-Points

Observation Remember that there is a mapping along with the DAG from section
2.4.1 which tells us where the appropriate destination node is. The information
comprised in a destination-node is its station id and its set of successors. The

25

Chapter 3 Compact Representation of Transfer Patterns

successors determine the set of transfer patterns to this destination by all paths from
the destination-node to the departure-node of the DAG. The station id of the node is
also determined by the mapping. Thus, the station id label of the node is redundant.
With the only substantial information being the set of successors, all destination
nodes with equal successors can be merged.

For example, in the DAG representing the patterns ’AC’, ’ABC’, ’ABD’, ’AE’ and
’ABE’ depicted in figure 3.5, the patterns from A to C and to E are equal except for
the last stop. They can be represented by a common destination node. Its label is
irrelevant as it can be determined from the mapping. The destination node for D,
however, represents a different set of patterns, so it cannot be combined with the
other one.

Improvement In the original DAG (see [2] and figure 2.2), the majority of nodes
are destination nodes. The redundancy among them can be resolved by replacing all
nodes with the same set of successor nodes by a single incognito node, i.e. a node
without a label. The query graph construction must be adapted such that it assigns
a label to the incognito node when traversing it. This is a simple, yet very effective
change to the data structure. We combine this improvement with the previous one
and refer to the combination as compressing the transfer pattern DAG. Results for
this compression can be found in section 3.4.

3.2.3 Joint DAG

Observation When inspecting the structure of the transfer patterns we made
another observation: For neighboring stations the transfer patterns are somewhat
similar. Especially for remote destinations there is only little variance. To exploit
this redundancy and decrease the size of the data structures further we pursue an
idea that was incepted by the foregoing section. We could introduce incognito nodes,
because the label (the station id) of a node can be assigned from the mapping. In fact,
we always use the transfer patterns DAG within a context: We either add patterns
or we construct a query graph from it. In either case, we know the destination and
the departure station from context.

Joint Pattern DAG We use this observation and change the preceding data struc-
tures and algorithms in the following way. The root node of the DAG becomes an
incognito node. Instead of one DAG per departure station, we maintain one joint
DAG (jDAG) with a single root for all departure stations. For each departure, the
mapping indicating the entry point for each reachable destination is kept as before.
But this mapping now points into the jDAG. This data structure automatically
resolves the redundancy observed above. Note that also all arcs pointing to the
root-node are now obsolete. Despite this, we keep them in the graph, as their number

26

3.2 Reducing Redundancy in Directed Acyclic Graphs

A B

C

D

E

TargetMap(A)
C : C
D : D
E : E

(a) Example DAG for the patterns ’AC’, ’ABC’, ’ABD’,
’AE’ and ’ABE’ with the original data structure.

A B

∗

D

∗

TargetMap(A)
C : ∗
D : D
E : ∗

(b) The map determines the station id of the destination-
nodes, so their labels are arbitrary.

A B

*

D

TargetMap(A)

C : *
D : D
E : *

(c) The destination nodes for C and E are now equal and
can be merged.

Figure 3.5: Merging redundant destination nodes.Label of destination-node D is
unchanged for better distinction.

27

Chapter 3 Compact Representation of Transfer Patterns

A C D

G

F

TargetMap(A)
G : G
F : F

B C D E
TargetMap(B)

E : E

(a)

* C D

G

F

TargetMap(A)
G : G
F : F

* C D E
TargetMap(B)

E : E

(b)

∗ C D E

F

G

TargetMap(A)
G : G
F : F

TargetMap(B)
E : E

(c)

Figure 3.6: Example for a joint pattern DAG. The two DAGs in (a) have an equal
internal structure given the label of their departure-node is known from context
(b). The joint DAG resolves the redundancy (c).

is limited by the number of distinct stations and the algorithms for DAG and Query
Graph construction need to be changed otherwise.
Figure 3.6 gives an example for the patterns ’ACG’, ’ACF’, ’ACDF’ and ’BCDE’.
The patterns represented by the graphs for departures A and B can be represented
by a joint graph. This saves two nodes and arcs.
Beside the reduced size, the jDAG has even more advantages: It easily adapts to
the essential construction and retrieval processes of chapter 2. When extending the
DAG with a new pattern, we ignore the id of the pattern’s first stop. During query
graph construction, the root node’s label is assigned from the context. Moreover,
the compression techniques introduced in sections 3.2.1 and 3.2.2 can be used on
the joint graph, such that all redundancies discussed so far are removed. We show
results for this joint representation alone and compressed by the previous techniques
in the end of this chapter.
Furthermore, the location-based query graph construction can be extended such
that it not only creates the graph from one departure to multiple destinations in
parallel [10], but also from multiple departures to multiple destinations: Start at
the destination nodes for all departures and all destinations. For each destination
node keep an indicator for the departure station(s) from which it can be reached

28

3.3 Further Ideas

and start backtracking the paths in the joint DAG. When reaching the incognito
root node, connect the path to the departure nodes in the query graph denoted by
its indicator.
The concept of the joint DAG is quite flexible. Instead of one joint DAG for all
stations, one could consider a partitioning of the network, where each group of
stations shares a joint DAG.

3.3 Further Ideas

In the compressed joint DAG there is no more obvious redundancy. The mapping
from each departure-destination pair to its corresponding entry-point (destination
node) in the DAG has become the largest part of the data. A more space-efficient
structure for this mapping would further improve the size of the data. In the DAG,
the majority of the nodes are destination nodes. Here, destination nodes could be
separated from the remaining graph and their successors may be stored as space-
efficient lists of integers, with variable width or gap encoding. However, such an
implementation goes beyond the scope of this thesis.
Another idea we investigated partially is to formulate the destination maps recursively.
Let ms = {(s, t)→ i} denote a map with entries from departure s and destination t
to index i. We did first experiments looking for successive stations s1 and s2 along
lines and counting maps ms1 for which ms1 ⊇ ms2 holds, i.e. ms1 has the same entries
as ms2 and maybe some in addition. This suggests that given a suitable recursive
formulation ms1 could be represented by only the elements ms1 \ms2 and a pointer
to ms2 . We conducted a first experiment counting the entries which become obsolete
this way. The results suggest that between 10 and 20 percent of the map entries
could be saved by such a recursive formulation. As announced above, we did not
pursue this approach further.

3.4 Results

Experimental Setup In the remainder, we present results outlining the contribution
of the first part of this thesis. To evaluate the improvement of the techniques
introduced before, we computed the transfer patterns on the four datasets from 2.2.5
for the same period as in 3.1.3. To understand if and how the advancement depends
on the structure of the network, we repeated the computation on time expanded
graphs generated for different walking transfer radii (100m, 500m and 1000m). The
same maximum walking distance applies for walking at the beginning (initial labels
at neighbors) and in the end (arrival loop candidates) of a path. Like in previous
experiments (section 3.1.3) we select one percent of the stations as hubs. Local and
global profile queries are limited to 4 and 6 legs respectively. There was no limit on
the cost of paths.

29

Chapter 3 Compact Representation of Transfer Patterns

The generated transfer patterns are represented using four different data structures.
The original DAG (see figure 2.2) with the destination mappings forms the baseline
(TP). We compare it to the compressed version with removed suffix redundancy and
merged destination nodes (TPc), the joint DAG (jDAG) and the compressed joint
DAG (jDAGc). This subdivision permits a detailed understanding which technique
decreases the size of by what magnitude. For all data structures we measured
the number of internal nodes, destination nodes and arcs as well as the consumed
memory. We also calculate the average number of Bytes required to represent one
pattern.

The tables 3.2–3.4 show the output sizes of all computations. For each part of these
tables the header specifies the dataset and the walking distance. The two following
numbers report the total number of optimal transfer patterns and the average number
of such patterns between two stations.

A Note on Data Sizes When comparing the results at hand to the data sizes
documented in the original article on transfer pattern routing [2], the different
parameter settings for the transfer pattern computation must be taken into account.
Most notably, the authors limited local searches to 3 legs, while we used 4 legs.
This increases the output size of the local transfer patterns for our approach. The
restriction of the maximum time of travel in their paper accounts for the time-
expanded graph wrapped for multiple days which they employed. It should not be
responsible for a large difference in comparison to our results.

As mentioned in the introduction, we found out that, in order to achieve the data
sizes reported in the original paper [2] (table 3), some undocumented improvement
or non-trivial implementation detail must have been used. According to personal
communication with the current project maintainers, a technique similar to merging
destination nodes with equal successors (section 3.2.2) was used.

Evaluation In general the tables reflect the sizes of the underlying GTFS data sets.
In larger networks there are more transfer patterns. The average number of optimal
transfer patterns between two stations is an indicator for the variance among the
optimal paths during the course of the day, and for the number of routes with a
different trade-off between travel time and number of transfers.

In the three tables the influence of the walking distance becomes visible: Generally
speaking a larger walking radius leads to a smaller output size. When routes can walk
farther in the beginning, often a faster connection can be reached, which dominates
other routes. A longer distance for final walking causes more labels being dominated
in the arrival chain algorithm. This makes the optimal paths more uniform. As
the patterns are stored without marginal walking, the number of patterns decreases.
However, no limit to the walking distance would render the computation time
impracticable, so this is not a good idea. For instance, the computation of the

30

3.4 Results

transfer patterns for New York City with 1 000 meter walking radius did not finish
in time to be included in this thesis.
We now inspect the difference between the representations. Starting with the first
two columns, we observe that the number of internal nodes is slightly decreased for
TPc. This is the effect of the compact representation of equal suffixes achieved with
the algorithm of section 3.2.1. The reduction of the number of internal nodes ranges
from one eighth to one fourth between the different data sets. A more significant
improvement is the reduced number of destination nodes with the representation TPc.
This is on the account of the merging of these nodes with the technique from section
3.2.2. It removes between 50% and 80% of the destination nodes depending on the
data set. Because the destination-nodes usually have more than one successor (other
than internal nodes), this technique mainly accounts for the drop in the number of
arcs. With the destination-nodes representing the majority of nodes in the original
DAGs of TP, the reduced memory size of this representation is mostly due to the
merging of these nodes.
The third column (jDAG) shows the size of the structures when using a joint DAG
from section 3.2.3 instead of one DAG for each station. This significantly decreases
the number of internal nodes. As every internal node in the original DAGs has at
most one outgoing arc, the reduction of the number of arcs is almost equal. Compared
to the sum of internal nodes of the separate DAGs, the joint DAG has between 78%
and 88% less nodes. Because the number of saved arcs is not as large as for TPc, a
little less memory is saved with this representation.
Finally the fourth column (jDAGc) shows the results for the patterns represented
by a joint DAG, which is compressed with the two other methods. Compared to
the plain jDAG, the number of internal nodes decreases further, even if the effect of
the compact representation of suffixes is not as large as between the columns one
and two. Merging equal destination nodes works even better than for TPc. When
located in separate graphs, the redundancy of the destination-nodes between the
graphs cannot be resolved. Because all the nodes are now part of the same graph,
this becomes possible.
Clearly, jDAGc is the most compact of these representations. Compared to the
original data structure, the internal parts of the graphs shrinks by 80%. The
number of destination nodes decreases by 65%–95%. The improvements are relatively
independent from the different walking radii in the computation of the transfer
patterns, but the savings by merging equal destination nodes seems to be a bit lower
for large walking distances. Most probably this is because for long walkways there
are less patterns anyway, and so there is less redundancy.
The increasing compactness of the graph structures does not express proportionally
in the decrease of memory consumption. This is due to the tables which indicate
the entry-point for all destinations reachable from a station. These mappings stay
the same for all four representations and form the largest part of the information in
jDAGc.

31

Chapter 3 Compact Representation of Transfer Patterns

Table 3.2: Size of the transfer patterns in different representations for Hawaii,
Detroit, Toronto and New York City with walking radius 100m. The numbers
in the dataset-headers denote the total number of transfer patterns represented
and the average number of transfer patterns between two stations. The columns
show different representations: TP is the original DAG structure. TP c applies the
suffix and destination node compression from sections 3.2.1 and 3.2.2. jDAG uses
the joint DAG from section 3.2.3. jDAGc applies the compression methods on
top of the joint DAG.

TP TPc jDAG jDAGc

Hawaii@100m: 51.0M, 5.8
internal nodes 7.2M 5.4M 822.4K 726.5K
destination nodes 8.9M 2.5M 8.9M 1.3M
arcs 58.3M 26.2M 51.9M 15.0M
Memory size (Byte) 497.4M 270.4M 394.7M 155.6M
Byte/pattern 9.7 5.3 7.7 3.0

Detroit@100m: 61.8M, 2.9
internal nodes 8.1M 7.1M 755.8K 716.3K
destination nodes 21.0M 3.9M 21.0M 1.4M
arcs 69.9M 24.4M 62.6M 9.5M
Memory size (Byte) 797.0M 397.0M 680.2M 232.1M
Byte/pattern 12.9 6.4 11.0 3.8

Toronto@100m: 215.8M, 4.9
internal nodes 36.8M 27.8M 4.5M 3.9M
destination nodes 44.5M 13.3M 44.5M 5.8M
arcs 252.7M 116.7M 220.3M 56.7M
Memory size (Byte) 2.3G 1.3G 1.8G 700.0M
Byte/pattern 10.9 6.1 8.5 3.2

New York City@100m: 611.6M, 5.2
internal nodes 114.8M 91.2M 19.5M 16.9M
destination nodes 117.5M 46.6M 117.5M 26.8M
arcs 726.4M 400.5M 631.1M 251.7M
Memory size (Byte) 6.6G 4.2G 5.1G 2.5G
Byte/pattern 10.8 6.9 8.4 4.0

TP TPc jDAG jDAGc

32

3.4 Results

Table 3.3: Size of the transfer patterns in different representations for Hawaii,
Detroit, Toronto and New York City with walking radius 500m. The numbers
in the dataset-headers denote the total number of transfer patterns represented
and the average number of transfer patterns between two stations. The columns
show different representations: TP is the original DAG structure. TP c applies the
suffix and destination node compression from sections 3.2.1 and 3.2.2. jDAG uses
the joint DAG from section 3.2.3. jDAGc applies the compression methods on
top of the joint DAG.

TP TPc jDAG jDAGc

Hawaii@500m: 34.4M, 5.2
internal nodes 4.6M 3.4M 648.9K 578.5K
destination nodes 6.6M 1.8M 6.6M 1.1M
arcs 39.0M 16.7M 35.0M 11.2M
Memory size (Byte) 343.4M 183.0M 279.6M 118.1M
Byte/pattern 10.0 5.3 8.1 3.4

Detroit@500m: 64.5M, 3.6
internal nodes 8.5M 6.9M 932.3K 880.8K
destination nodes 17.7M 3.8M 17.7M 1.9M
arcs 73.0M 26.8M 65.4M 14.0M
Memory size (Byte) 748.2M 377.4M 626.7M 230.5M
Byte/pattern 11.6 5.9 9.7 3.6

Toronto@500m: 238.3M, 6.8
internal nodes 36.6M 28.6M 4.9M 4.4M
destination nodes 35.1M 13.8M 35.1M 8.4M
arcs 274.9M 150.3M 243.1M 101.0M
Memory size (Byte) 2.2G 1.4G 1.7G 838.8M
Byte/pattern 9.4 5.8 7.3 3.5

New York City@500m: 382.9M, 5.3
internal nodes 72.6M 61.7M 16.1M 15.1M
destination nodes 72.4M 35.7M 72.4M 25.0M
arcs 455.5M 298.1M 399.0M 229.1M
Memory size (Byte) 4.1G 2.9G 3.2G 2.0G
Byte/pattern 10.8 7.7 8.5 5.2

TP TPc jDAG jDAGc

33

Chapter 3 Compact Representation of Transfer Patterns

Table 3.4: Size of the transfer patterns in different representations for Hawaii,
Detroit and Toronto with walking radius 1000m. The numbers in the dataset-
headers denote the total number of transfer patterns represented and the average
number of transfer patterns between two stations. The columns show different
representations: TP is the original DAG structure. TP c applies the suffix and
destination node compression from sections 3.2.1 and 3.2.2. jDAG uses the joint
DAG from section 3.2.3. jDAGc applies the compression methods on top of the
joint DAG. NYC is missing here because the computation did not finish in time.

TP TPc jDAG jDAGc

Hawaii@1000m: 25.1M, 4.5
internal nodes 3.4M 2.7M 542.5K 504.5K
destination nodes 5.5M 1.7M 5.5M 1.0M
arcs 28.5M 13.1M 25.7M 8.8M
Memory size (Byte) 265.8M 149.8M 219.7M 97.9M
Byte/pattern 10.6 6.0 8.7 3.9

Detroit@1000m: 48.8M, 3.4
internal nodes 6.7M 5.8M 821.1K 795.6K
destination nodes 14.3M 3.5M 14.3M 1.7M
arcs 55.5M 22.3M 49.7M 12.3M
Memory size (Byte) 588.3M 314.9M 494.1M 193.9M
Byte/pattern 12.0 6.4 10.1 4.0

Toronto@1000m: 162.0M, 5.8
internal nodes 24.2M 20.6M 3.2M 3.0M
destination nodes 27.9M 11.7M 27.9M 7.2M
arcs 186.2M 110.0M 165.2M 78.3M
Memory size (Byte) 1.6G 1.1G 1.3G 659.8M
Byte/pattern 9.8 6.5 7.8 4.1

TP TPc jDAG jDAGc

34

3.5 Summary

3.5 Summary

Addressing the first objective of this thesis, we proposed a variant of transfer pattern
routing which is less informed and we developed a set of techniques representing the
transfer patterns more compact. The first approach relies on a recursive construction
of the search space, which allows to work with a fraction of the transfer pattern
information, namely the first transfer. While this algorithm requires less memory to
store the information, it has some major disadvantages compared to transfer pattern
routing.
In the second part of this chapter, experiments emphasize the utility of the techniques
explained in sections 3.2.1–3.2.3. It turns out that compressing equal suffixes in
the transfer patterns is less advantageous than we expected. When storing longer
sequences, this technique may become more beneficial. Merging equal destination-
nodes proved to be a very important approach to reduce the size of the information. It
transpires that another large amount of redundancy can be resolved by the joint repre-
sentation of all patterns in one DAG. By proposing a more compact representation for
the transfer patterns, we have accomplished the first objective.

35

4 Robustness of Transfer Patterns

4.1 Transfer Patterns and Real-Time Updates

The substantial drawback of transfer pattern routing is the expensive computation of
the patterns. For the New York City dataset with 1000 meters walking distance for
example, it takes about two weeks on a machine with 20 cores with the settings from
section 3.4. When the search answers queries using the transfer patterns, it assumes
that the timetable data on which the patterns were computed is still valid. But due
to delay, this is not true in general. This chapter investigates whether the information
of the transfer patterns is still valid with realistic real-time updates to the underlying
network. In other words, we search an answer to the question if transfer pattern
routing finds optimal routes when connections are delayed.
In the beginning of this chapter we explain our methodology in addressing this
question and how we model real-time updates in the network. After that, we present
and discuss experimental results.

4.2 Measuring Robustness

Remember that transfer pattern routing has two main components: There are the
transfer patterns representing optimal connections between stations independent of
the departure time, which are used to construct a relatively small query graph (section
2.4.1). And there is the efficient data structure for direct connection queries, which
allows for fast search on these graphs (section 2.4.2). If a connection in the underlying
transportation network changes, it is hard to say which optimal connections the
change affects. A new computation of the transfer patterns is impractical, especially
if the timetable data is updated frequently. In contrast, the direct connection data
can be updated within a few minutes ([2], table 2).
We say the transfer pattern information is robust to real-time updates, if a search
using updated direct connection data and the original patterns finds optimal paths.
To study the robustness, we generate the time-expanded graph for one traffic day
and compute the transfer patterns. Then different delay scenarios are applied to the
network and to the direct connection data. In one experiment per scenario, a large
number of location-to-location queries is answered by transfer pattern routing and
the resulting paths are compared to the optimal paths found by multi-label Dijkstra

37

Chapter 4 Robustness of Transfer Patterns

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2 4 6 8 10 12 14 16 18 20

p
ro

b
a
b

ili
ty

delay in minutes

µ = 5min
µ = 15min
µ = 50min

Figure 4.1: Probability density functions for exponential distributions p(x) =
a · exp(−ax), a = 1/µ of different mean µ.

on the updated time-expanded graph. The next section will go into more detail
about how the delay is modeled.

4.3 Modeling Delay

Each scenario partitions the set of trips into groups of common average delay. A
random subset of the trips is selected. All the trips in that set are delayed with a
random number of seconds drawn from the same exponential distribution. For every
trip the random delay is added to the stop times, starting at a random position along
its sequence of stops.

In the experiments we compare six different delay scenarios. There are three
generic scenarios where one quarter of the connections are delayed with 5 (Low), 15
(Medium) and 50 minutes (High) delay in average. Figure 4.1 shows the probability
density functions for these average delays. In addition, we generate three scenarios
with different groups of average delay, which we call Switzerland, Germany and
India. They have an increasing amount of delay. In the last scenario, every trip is
delayed. The scenarios are specified in table 4.1.

With the introduction of hub stations and a transfer limit for local profile queries,
transfer pattern routing becomes suboptimal. It cannot find optimal paths from
non-important stations to destinations with more than three transfers, which do not
transfer at a hub. Therefore, we perform the same queries on the unchanged network
too, forming the baseline Null for the delayed scenarios.

38

4.4 Experiments

Table 4.1: Delay scenarios applied to the timetable data.

Scenario Share of trips and average delay
Low 25% : 5 min
Medium 25% : 15 min
High 25% : 50 min
Switzerland 10% : 5 min, 3% : 15 min, 1% : 50 min
Germany 20% : 5 min, 10% : 15 min, 5% : 50 min
India 40% : 5 min, 40% : 15 min, 20% : 50 min

4.4 Experiments

Setup In the experiments we evaluate the robustness of the transfer patterns
computed in chapter 3. For each data set we focus on the patterns computed with the
largest walking distance, as this gives the most realistic results.

We issue random location-to-location queries with departure times from an interval
of 24 hours starting at 4am. This is repeated until 50,000 queries with at least one
connection have been answered. To account for varying traffic density during the day,
the departure time is selected in the following way: With probability 0.5 it is drawn
uniformly from the rush hours 6am–10am and 16pm–20pm. Otherwise it is drawn
from the full time range 4am–4am. Thus, the probability that a query is issued
during the rush hours is four times as high as on other daytimes. Although both
routing algorithms could answer queries from arbitrary locations correctly, comparing
the resulting paths would be hard. For the sake of simplicity we choose random
stations and take their geographic coordinates as departure or destination location.
The selection follows the density of traffic in different areas. A station is selected
with a probability that respects the number of incident connections at this station.
Let ns denote the number of departure events at station s. Then the probability
that s is selected is

ps =
√
ns∑

s′∈S

√
ns′

Furthermore, we disallow queries where the distance between the departure and
destination is less than 2r, with r denoting the walking distance in the precomputation.
Because via-walking is not possible in our model, such queries yield obscure paths a
human person would never accept.

Each query x → y@t is answered by transfer pattern routing using the patterns
computed on the original network and the direct connection data from the current
scenario. The paths it finds are compared to the results of a multi-label Dijkstra on
the scenario’s time-expanded graph. To compute the latter, the graph is temporarily
extended with two nodes according to section 2.2.4. Dijkstra’s algorithm is started

39

Chapter 4 Robustness of Transfer Patterns

from with a label (0, 0) at the node for x and terminated as soon as all open labels
are dominated by the labels at the destination node y.
The shortest paths found by the two algorithms are compared and the paths of
transfer pattern routing are classified as follows: If a path of equal costs is among the
paths found by Dijkstra’s algorithm, the response is optimal. For every Dijkstra-
generated path which has no equal path found by transfer pattern routing, the most
similar path is selected. If there is no such path, the result is bad. If there is a
path with the same penalty, the duration difference is inspected. If the path found
by transfer pattern routing is less than 5% of the total travel time and less than 5
minutes slower than the optimal path, it is almost optimal a . If it is less than
10% and less than 10 minutes late, it is almost optimal b. Otherwise the path is
classified as bad.

Class Difference d to optimal path costs c∗

optimal d = 0
almost optimal a d ≤ 5min ∧ d

c∗
≤ 5%

almost optimal b d ≤ 10min ∧ d
c∗
≤ 10%

bad otherwise

Results The tables and figures on pages 42, 43, 44 and 45 show the results of
our experiments conducted for Hawaii, Detroit, Toronto and New York City. The
classification results listed in the tables express the influence of the scenarios: With
increasing average delay, the share of optimal responses decreases. The tables also
show that for the baseline null the paths found by transfer pattern routing are
mostly optimal. For each data set there are just a couple of suboptimal responses.
Regarding the robustness, even for india the share of suboptimal paths is never above
3.5%. Beside this, the classification results show that most of the suboptimal paths
are quite close to the optimum: The major part is classified as almost optimal
a and the share of bad paths is never larger than 0.7%. When examining the
suboptimal responses in detail we observed a large number of paths which reach the
destination with the same time of travel, but one more transfer.
For suboptimal paths the figures next to the tables show the distribution of the
relative differences to the corresponding optimal path by a box-plot for each scenario.
In these diagrams the red bar marks the median, the box contains the interval
between the upper and lower quartile of the data. The whiskers have a length of 1.5
times the distance between the quartiles.
The influence of the scenarios’ amount of delay is not reflected as clearly in the
distributions as for the classification results above. For example, the distribution
for the scenario germany is less wide-spread as for switzerland in some data
sets. However, we can observe that the median of the distribution is below 0.2 for all
data sets. There is a noteworthy difference between the plots for Hawaii and Detroit

40

4.4 Experiments

and the ones for Toronto and New York City. The relative cost differences of the
former are generally larger. For the latter two data sets, the relative difference of the
upper quartile is often within 0.1, meaning that 75% of the suboptimal responses
are less than 10% off the optimal path cost. This dissimilarity between the data
sets is probably a consequence of the different average path length for the networks:
Hawaii and Detroit are small compared to the other two, so random paths have a
smaller average time of travel. Moreover, the average number of patterns between
two stations is larger for Toronto and New York City (see table 3.3, for example), so
there are more alternatives available if the optimal route becomes suboptimal due to
delay.
In the distribution of responses, there are plenty of outliers, some of which are
far off from the optimal path. Manual inspection of these critical outliers showed
that they typically stem from queries between remote places with bad connectiv-
ity.
These results indicate that transfer patterns are quite robust to delay. Even in the
worst scenario the share of suboptimal responses is very small, and most of these
paths are almost optimal.

41

Chapter 4 Robustness of Transfer Patterns

Table 4.2: Classification of paths under different delay scenarios for Hawaii@1000m.

optimal almost a almost b bad
Null 99.99% 0.00% 0.00% 0.00%
Low 99.80% 0.11% 0.01% 0.05%
Medium 99.56% 0.31% 0.03% 0.08%
High 99.34% 0.45% 0.04% 0.15%
Switzerland 99.84% 0.11% 0.01% 0.03%
Germany 99.56% 0.27% 0.04% 0.12%
India 98.50% 1.07% 0.11% 0.31%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative offset to optimal travel time

NULL

LOW

MEDIUM

HIGH

SWITZERLAND

GERMANY

INDIA

Figure 4.2: Suboptimal paths: Time of travel difference to the optimal path with
equal number of transfers. Results for Hawaii@1000m. Outliers above 1.0 are not
shown.

42

4.4 Experiments

Table 4.3: Classification of paths under different delay scenarios for Detroit@1000m.

optimal almost a almost b bad
Null 99.99% 0.00% 0.00% 0.00%
Low 99.19% 0.59% 0.07% 0.13%
Medium 99.04% 0.67% 0.09% 0.18%
High 98.77% 0.85% 0.11% 0.25%
Switzerland 99.57% 0.31% 0.03% 0.07%
Germany 98.83% 0.85% 0.10% 0.20%
India 96.56% 2.50% 0.35% 0.57%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative offset to optimal travel time

NULL

LOW

MEDIUM

HIGH

SWITZERLAND

GERMANY

INDIA

Figure 4.3: Suboptimal path: Time of travel difference to the optimal path with
equal number of transfers. Results for Detroit@1000m. Outliers above 1.0 are
not shown.

43

Chapter 4 Robustness of Transfer Patterns

Table 4.4: Classification of paths under different delay scenarios for
Toronto@1000m.

optimal almost a almost b bad
Null 99.98% 0.00% 0.00% 0.00%
Low 99.73% 0.12% 0.04% 0.08%
Medium 99.59% 0.20% 0.06% 0.13%
High 99.49% 0.27% 0.07% 0.16%
Switzerland 99.82% 0.09% 0.02% 0.05%
Germany 99.54% 0.22% 0.06% 0.16%
India 97.85% 1.12% 0.31% 0.70%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative offset to optimal travel time

NULL

LOW

MEDIUM

HIGH

SWITZERLAND

GERMANY

INDIA

Figure 4.4: Suboptimal paths: Time of travel difference to the optimal path with
equal number of transfers. Results for Toronto@1000m. Outliers above 1.0 are
not shown.

44

4.4 Experiments

Table 4.5: Classification of paths under different delay scenarios for New York
City@500m.

optimal almost a almost b bad
Null 99.97% 0.02% 0.00% 0.00%
Low 99.77% 0.12% 0.02% 0.07%
Medium 99.72% 0.16% 0.03% 0.07%
High 99.57% 0.27% 0.04% 0.09%
Switzerland 99.84% 0.10% 0.01% 0.03%
Germany 99.66% 0.20% 0.03% 0.09%
India 98.76% 0.74% 0.15% 0.33%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative offset to optimal travel time

NULL

LOW

MEDIUM

HIGH

SWITZERLAND

GERMANY

INDIA

Figure 4.5: Suboptimal paths: Time of travel difference to the optimal path with
equal number of transfers. Results for New York City@500m. Outliers above
1.0 are not shown.

45

5 Conclusion

In this chapter we discuss the importance of the results of this thesis. We emphasize its
key contributions and suggest consequential topics for future research.

5.1 Compact Representation of Transfer Patterns

The main outcome of the first part is the identification, documentation and resolution
of redundancy in the data structure proposed by the original article [2]. We apply
existing techniques for isomorphic graph reduction to the transfer patterns and we
propose new approaches to the representation, most noteworthy the joint DAG. The
thesis successfully examines the combination of these methods and corroborates their
utility by a set of experiments on real-world data.

In summary, the most effective of these advances allow to reduce the number of
nodes in the internal graph by a factor between five and eight, in the total graph
by a factor between five and ten. The total size of the data is reduced by 50%–
75%.

Furthermore, this thesis documents the influence of walking on the size of the transfer
patterns: While an increasing walking radius slows down the computation, it shrinks
the size of the data. Also, we point out important pitfalls for the implementation of
transfer patterns routing.

As a consequence of the removed redundancy in the graphs representing the transfer
patterns, the main part of the data size is due to the mapping of destinations to
entry-points, for which we suggest possible improvements. Future research should
focus on a compact representation for these mappings.

Our experimental results indicate that the approaches benefit from heuristic im-
provements as the concept of important stations. However, we did not study this
in detail. Also our computational capacity was too limited as to examine networks
larger than New York City. So to some extend, the scalability of the presented
approaches remains an open question.

Another topic arising from this thesis is a space-efficient implementation of the graph
structures. We did not put much effort into that, nonetheless we think a refined
implementation would use only half as much memory.

47

Chapter 5 Conclusion

5.2 Robustness of Transfer Patterns

The results of the second part of this thesis indicate the robustness of transfer
patterns. Even under extreme delay scenarios, the quality of the results is very high.
The share of suboptimal responses is never above 3.5%. More than three quarter of
the suboptimal paths are almost optimal. Less than one percent of all found paths
is actually bad.
Beside the evidence for robustness, this thesis gives a more detailed statement about
the quality of transfer pattern routing in the context of heuristic improvements. We
document the share of suboptimal responses when computing transfer patterns using
important stations and limited local profile queries in more detail than any of the
publications on transfer patterns so far.
The inherent disadvantage of the random scenarios is that they model delay inde-
pendently. In realistic public transportation, there are strong dependencies between
connections. On the one hand, delay is often systemic. For example, a traffic jam will
delay a series of trips, a bridge under maintenance will cause route deviations. On
the other hand, there are mechanisms to compensate delay: A bus can drive faster
to catch up with its schedule. Another example would be that in the EU, traffic
agencies are bound by law to reimburse passengers for delay. Because of this the
agencies have their own complicated calculations which sometimes make connections
wait for a delayed train. The acquisition of realistic delay data and repetition of the
experiments on top of that is one topic for future research.
Another problem is the dependency of the robustness towards parameters of the
transfer pattern computation: How does the robustness change with different hub
selection strategies or increasing walking distance?
Although the quality of the paths found is generally quite good, there are a few
exceptions. Future work should focus on increasing the robustness of transfer pattern
routing, which means reducing the share of suboptimal responses and the magnitude
of outliers.

With the introduction of a new representation for transfer patterns, which has proven
to be a lot more compact than previous approaches, and detailed experiments estab-
lishing the remarkable robustness of the routing algorithm, this thesis contributes to
the knowledge about transfer pattern routing to a great extent.

48

Bibliography

[1] Hannah Bast. Car or Public Transport - Two Worlds. In Susanne Albers,
Helmut Alt, and Stefan Näher, editors, Efficient Algorithms, volume 5760 of
Lecture Notes in Computer Science, pages 355–367. Springer, 2009.

[2] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. Fast Routing in Very Large Public
Transportation Networks Using Transfer Patterns. In Mark de Berg and Ulrich
Meyer, editors, ESA (1), volume 6346 of Lecture Notes in Computer Science,
pages 290–301. Springer, 2010.

[3] Manuel Braun. Multi-Model Route Planning with Transfer Patterns. Master’s
thesis, Albert-Ludwigs-Universität Freiburg, December 2012.

[4] Mirko Brodesser. Multi-Modal Route Planning. Ongoing master’s thesis, Albert-
Ludwigs-Universität Freiburg, April 2013.

[5] Maxime Crochemore and Renaud Vérin. On Compact Directed Acyclic Word
Graphs. In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa, editors,
Structures in Logic and Computer Science, volume 1261 of Lecture Notes in
Computer Science, pages 192–211. Springer, 1997.

[6] Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard Watson. Incremen-
tal Construction of Minimal Acyclic Finite State Automata. Computational
Linguistics, 26(1):3–16, 2000.

[7] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public
Transit Routing. In David A. Bader and Petra Mutzel, editors, ALENEX, pages
130–140. SIAM / Omnipress, 2012.

[8] Edsger Wybe Dijkstra. A Note on Two Problems in Connection with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[9] Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their Uses
in Improved Network Optimization Algorithms. In FOCS, pages 338–346. IEEE
Computer Society, 1984.

[10] Robert Geisberger. Advanced Route Planning in Transportation Networks. PhD
thesis, Karlsruhe Institute of Technologie, 2011.

[11] General Transit Feed Specification Reference. https://developers.google.
com/transit/gtfs/reference.

49

https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference

Bibliography

[12] Guy Jacobson. Space-efficient Static Trees and Graphs. In FOCS, pages 549–554.
IEEE Computer Society, 1989.

[13] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit Representation of
Graphs. In Janos Simon, editor, STOC, pages 334–343. ACM, 1988.

[14] Ronald Prescott Loui. Optimal Paths in Graphs with Stochastic or Multidimen-
sional Weights. Commun. ACM, 26(9):670–676, 1983.

[15] Rolf H. Möhring. Verteilte Verbindungssuche im öffentlichen Personen-
nahverkehr: Graphentheoretische Modelle und Algorithmen, pages 192–220.
Vieweg, 1999.

[16] Matthias Müller-Hannemann and Mathias Schnee. Finding All Attractive Train
Connections by Multi-criteria Pareto Search. In Frank Geraets, Leo G. Kroon,
Anita Schöbel, Dorothea Wagner, and Christos D. Zaroliagis, editors, ATMOS,
volume 4359 of Lecture Notes in Computer Science, pages 246–263. Springer,
2004.

[17] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis.
Efficient models for timetable information in public transportation systems.
ACM Journal of Experimental Algorithmics, 12, 2007.

[18] Ben Strasser. Delay-Robust Stochastic Routing in Timetable Networks. Diploma
thesis, Karlsruhe Institute of Technologie, July 2012.

[19] D. Theune. Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner-Texte zur Informatik. Teubner, 1995.

[20] Trillium Solutions Inc. Opportunities to leverage GTFS. https://docs.google.
com/document/d/17CoxTgGQPoUenz1HCW3kdCnX0sciPLvTa_wGRPZcqPc.

[21] György Turán. On the succinct representation of graphs. Discrete Applied
Mathematics, 8(3):289–294, 1984.

50

https://docs.google.com/document/d/17CoxTgGQPoUenz1HCW3kdCnX0sciPLvTa_wGRPZcqPc
https://docs.google.com/document/d/17CoxTgGQPoUenz1HCW3kdCnX0sciPLvTa_wGRPZcqPc

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Routing with Transfer Patterns
	2.1 Graphs, Shortest Paths and Dijkstra's Algorithm
	2.2 Modeling Timetable Data As Graph
	2.2.1 General Transit Feed Specification GTFS
	2.2.2 Time Expanded Graph
	2.2.3 Walking between Stations
	2.2.4 Location-to-Location Queries
	2.2.5 Used Datasets

	2.3 Shortest Path Problem in Public Transportation
	2.4 Transfer Pattern Routing
	2.4.1 Computing Transfer Patterns
	2.4.2 Exploiting Optimal Transfer Patterns for Search
	2.4.3 Heuristics

	3 Compact Representation of Transfer Patterns
	3.1 A Less Informed Approach: First-Transfer Routing
	3.1.1 Idea
	3.1.2 Implementation
	3.1.3 Results

	3.2 Reducing Redundancy in Directed Acyclic Graphs
	3.2.1 Isomorphic Reductions
	3.2.2 Shared Entry-Points
	3.2.3 Joint DAG

	3.3 Further Ideas
	3.4 Results
	3.5 Summary

	4 Robustness of Transfer Patterns
	4.1 Transfer Patterns and Real-Time Updates
	4.2 Measuring Robustness
	4.3 Modeling Delay
	4.4 Experiments

	5 Conclusion
	5.1 Compact Representation of Transfer Patterns
	5.2 Robustness of Transfer Patterns

	Bibliography

