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Abstract. We show how to route on very large public transportation
networks (up to half a billion arcs) with average query times of a few mil-
liseconds. We take into account many realistic features like: traffic days,
walking between stations, queries between geographic locations instead
of a source and a target station, and multi-criteria cost functions. Our al-
gorithm is based on two key observations: (1) many shortest paths share
the same transfer pattern, i.e., the sequence of stations where a change
of vehicle occurs; (2) direct connections without change of vehicle can
be looked up quickly. We precompute the respective data; in practice,
this can be done in time linear in the network size, at the expense of a
small fraction of non-optimal results. We have accelerated public trans-
portation routing on Google Maps with a system based on our ideas. We
report experimental results for three data sets of various kinds and sizes.

1 Introduction

In recent years, several algorithms have been developed that, after a precompu-
tation, find shortest paths on the road network of a whole continent in a few
microseconds, which is a million times faster than Dijkstra’s algorithm. However,
none of the tricks behind these algorithms yields similar speed-ups for public
transportation networks of comparable sizes, especially when they are realisti-
cally modeled and show poor structure, like bus-only networks in big metropoli-
tan areas. In this paper we present a new algorithm for routing on public trans-
portation networks that is fast even when the network is realistically modeled,
very large and poorly structured. These are the challenges faced by public trans-
portation routing on Google Maps (http://www.google.com/transit), and our
algorithm has successfully addressed them. It is based on the following new idea.

? This is an extended online-version of our ESA’10 paper with the same title and set
of authors. In particular, this online-version contains the proofs that were omitted
in the ESA’10 paper due to space limitations. This online-version was last modified
on July 6, 2010.
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Think of the query A@t → B, with source station A = Freiburg, target
station B = Zürich, and departure time t = 10:00. Without assuming anything
about the nature of the network and without any precomputation, we would have
to do a Dijkstra-like search and explore many nodes to compute an optimal path.
Now let us assume that we are given the following additional information: each
and every optimal path from Freiburg to Zürich, no matter on which day and at
which time of the day, either is a direct connection (with no transfer in between)
or it is a trip with exactly one transfer at Basel. We call Freiburg – Zürich
and Freiburg – Basel – Zürich the optimal transfer patterns between Freiburg
and Zürich (for each optimal path, take the source station, the sequence of
transfers, and the target station). Note how little information the set of optimal
transfer patterns for this station pair is. Additionally, let us assume that we have
timetable information for each station that allows us to very quickly determine
the next direct connection from a given station to some other station.

With this information, it becomes very easy to answer the query A@t → B
for an arbitrary given time t. Say t = 10:00. Find the next direct connection from
Freiburg to Zürich after t. Say it leaves Freiburg at 12:55 and arrives in Zürich
at 14:52. (There are only few direct trains between these two stations over the
day.) Also find the next direct connection from Freiburg to Basel after t. Say
it leaves Freiburg at 10:02 and arrives in Basel at 10:47. Then find the next
direct connection from Basel to Zürich after 10:47. Say it leaves Basel at 11:07
and arrives in Zürich at 12:00. In our cost model (see Section 3) these two
connections are incomparable (one is faster, and the other has less transfers),
and thus we would report both. Since the two given transfer patterns were the
only optimal ones, we can be sure to have found all optimal connections. And
we needed only three direct-connection queries to compute them.

Conceptually, our whole scheme goes as follows. The set of all optimal transfer
patterns between all station pairs is too large to precompute and store. We
therefore precompute a set of parts of transfer patterns such that all optimal
transfer patterns can be combined from these parts. For our three datasets, we
can precompute such parts in 20–40 core hours per 1 million departure/arrival
events and store them in 10–50 MB per 1000 stations. From these parts, also
non-optimal transfer patterns can be combined, but this only means additional
work at query time; it will not let us miss any optimal connections. Think of
storing parts of transfer patterns, to be recombined at query time, as a lossy
compression of the set of all optimal transfer patterns. We also precompute a
data structure for fast direct-connection queries, which, for our three datasets,
needs 3–10 MB per 1 000 stations and has a query time of 2–10µs.

Having this information precomputed, we then proceed as follows for a given
query A@t → B. From the precomputed parts, we compute all combinations
that yield a transfer pattern between A and B. We overlay all these patterns to
form what we call the query graph. Finding the optimal connection(s) amounts
to a shortest-path computation on the query graph with source A and target
B, where each arc evaluation is a direct-connection query. The query graph for
our simple example from above has three nodes (A = Freiburg, B = Zürich, and
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C = Basel) and three arcs (A → B, A → C, C → B). Due to the non-optimal
transfer patterns that come from the recombination of the precomputed parts,
our actual query graphs typically have several hundreds of arcs. However, since
direct-connection queries can be computed in about 10µs, this will still give us
query times on the order of a few milliseconds, and by the way our approach
works, these times are independent of the size of the network.

2 Related Work

The most successful “tricks of the trade” for fast routing on transportation
networks can be summarized under the following five headings: bidirectional
search, exploiting hierarchy, graph contraction, goal direction, and distance tables.
The recent overview article [1] describes each of these and provides evidence and
explanations why they give excellent speed-ups on road networks, but fail to do
so on public transportation networks, especially such with poor structure. Two
recent surveys on fast routing on road networks and on public transportation
networks, respectively, are [4] and [9].

A fully realistic model like ours was recently considered in [5] and [2]. How-
ever, the network considered in those papers is relatively small (about 8900
stations) and very well-structured (German trains, almost no local transport).
Also, there are only very few walking arcs, as walking between stations is rarely
an issue for pure train networks. Reported query times are about one second
for [5] and a few hundred milliseconds for [2]. The title of the latter paper aptly
states that obtaining speed-ups for routing on public transportation networks in
a realistic model “is harder than expected”.

The best query times so far, of around 1 ms, were achieved in [3] and [6].
However, their model does support neither walking between stations, nor traffic
days, nor multi-criteria costs, and, especially for the latter, it looks unlikely that
their algorithms can be suitably extended. These two papers considered a graph
of the European long-distance trains, and also two local networks (Berlin and
Frankfurt), of size about 10 000 stations each.

Our algorithm is the first to yield fast query times (on the order of a few
milliseconds) on a fully realistic model for public transportation networks also
with poor structure (like bus-only networks) and of sizes more than an order of
magnitude larger than what was considered so far.

3 Problem Formalization

A timetable describes the available trips of vehicles (buses, trains, ferries etc.)
along sequences of stations (bus stops, train stations, ports etc.), including the
times of day at which they depart and arrive. For routing, it is represented as a
graph, see [10] for a comparison of various graph models. We use a time-expanded
graph with three kinds of nodes, each carries a time and belongs to a station. For
every elementary connection from station A to the next station B on the same
trip, we put a departure node Ad@t1 at A with the departure time t1, an arrival
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node Ba@t2 at B with the arrival time t2 and an arc Ad@t1 → Ba@t2 to model
riding this vehicle from A to B. If the vehicle continues from B at time t3, we
put an arc Ba@t2 → Bd@t3 that represents staying on the vehicle at B. This is
possible no matter how small the difference t3 − t2 is.

Transfers at B shall be possible only to departures after a minimum transfer
duration ∆tB . For each departure node Bd@t we put a transfer node Bt@t at
the same time and an arc Bt@t → Bd@t between them. Also, we put an arc
Bt@t→ Bt@t′ to the transfer node at B that comes next in the ascending order
of departure times (with ties broken arbitrarily); these arcs form the waiting
chain at B. Now, to allow a transfer after having reached Ba@t2, we put an arc
to the first transfer node Bt@t with t ≥ t2 +∆tB . This gives the opportunity to
transfer to that and all later departures from B.

For exposition, we regard the graph as fully time-expanded, meaning times
increase unbounded from time 0 (midnight of day 0). In practice, we exploit the
periodicity of timetables by using times modulo 24 hours and bit masks to indi-
cate a trip’s traffic days. Also, we allow additional transfers by walking to nearby
stations. See Section 6 for details. In our implementation, the resulting graphs
can be stored in about 35 MB of memory per 1 million elementary connections.

Our scheme supports a fairly general class of multi-criteria cost functions and
optimality notions. In our implementation, a cost is a pair (d, p) of non-negative
duration and penalty. Duration of an arc is the difference in time between its
endpoints. Penalty applies mostly to transfers: each station B defines a fixed
penalty score for transferring, and that is the penalty component of the cost of
arcs Ba@t → Bt@t′. The arcs from departure to arrival nodes may be given
a small penalty score for using that elementary connection. Other arcs, in par-
ticular waiting arcs, have penalty zero. The cost of a path in the graph is the
component-wise sum of the costs of the arcs.

We say cost (d1, p1) dominates or is better than cost (d2, p2) in the Pareto
sense if d1 ≤ d2 and p1 ≤ p2 and one of the inequalities is strict. Each finite
set of costs has a unique subset of (Pareto-)optimal costs that are pairwise non-
dominating but dominate any other cost in the set (in the Pareto sense).

Definition 1. Consider a station-to-station query A@t → B. Take the first
transfer node At@t′ with t′ ≥ t. For this query, we extend the graph by a source
node S with an arc of duration t′ − t and penalty 0 that leads to At@t′ and by a
target node T with incoming arcs of zero cost from all arrival nodes of B.

The paths from S to T are the feasible connections for the query. If the cost
of a feasible connection is not dominated by any other, we call them optimal cost
and optimal connection, respectively, for the query.

The query’s result is an optimal set of connections, that is, a set of optimal
connections containing exactly one for each optimal cost.

Note that the waiting chain at Amakes paths from S through all departure nodes
after time t feasible. We exclude multiple connections for the same optimal cost.
They do occur (even for a single-criterion cost function) but add little value.4
4 Connections of equal cost, relative to query time t, arrive at the same time. It is

preferable to choose one that departs as late as possible from A; we will return to
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4 Basic Algorithm

In this section we present a first simple algorithm that illustrates the key ideas.
It has very fast query times but a quadratic precomputation complexity.

4.1 Fast direct-connection queries

Definition 2. For a direct-connection query A@t→ B, the feasible connections
are defined as in Definition 1, except that only connections without transfers are
permitted. The result of the query are the optimal costs in this restricted set.

The following data structure answers direct-connection queries in about 10µs.
1. Precompute all trips (maximal paths in the graph without transfer nodes)

and group them into lines L1, L2, . . . such that all trips on a line share the same
sequence of stations, do not overtake each other (FIFO property, like the train
routes in [10]), and have the same penalty score between any two stations.

The trips of a line are sorted by time and stored in a 2D array like this:
line L17 S154 S097 S987 S111 . . .

trip 1 8:15 8:22 8:23 8:27 8:29 8:38 8:39 . . .
trip 2 9:14 9:21 9:22 9:28 9:28 9:37 9:38 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

2. For each station, precompute the sorted list of lines incident to it and its
position(s) on each line. For example:

S097: (L8, 4) (L17, 2) (L34, 5) (L87, 17) . . .
S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) . . .

3. To answer a direct-connection query A@t → B, intersect the incidence
lists of A and B. For each occurrence of A before B on a line, read off the cost
of the earliest feasible trip, then choose the optimal costs among all these.
In our example, the query S097@9:03 → S111 finds positions 2 and 4 on L17
and the trip that reaches S111 at 9:37.

Lemma 1. A query A@t → B to the direct-connection data structure returns
all optimal costs of direct connections.

Proof. The straightforward proof can be found in the appendix.

4.2 Transfer patterns precomputation

Definition 3. For any path, consider the subsequence of nodes formed by the
first node, each arrival node whose successor is a transfer node, and the last
node. The sequence of stations of these nodes is the transfer pattern of the path.

An optimal set of transfer patterns for a pair (A,B) of stations is a set S
of transfer patterns such that for all queries A@t → B there is an optimal
set of connections whose transfer patterns are contained in S, and such that
each element in S is the transfer pattern of an optimal connection for a query
A@t→ B at some time t.

that in Section 6. Those that depart latest often differ in trivial ways (e.g., using
this or that tram between two train stations), so returning just one is fine.
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For every source station A, we compute optimal sets of transfer patterns
to all stations B reachable from it and store them in one DAG for A. This
DAG has three different types of nodes: one root node labeled A, for each reach-
able station B a target node labeled B, and for each transfer pattern prefix
AC1 . . . Ci, occurring in at least one transfer pattern AC1 . . . Ci . . . B, a prefix
node labeled Ci. They are connected in the natural way such that precisely the
transfer patterns we want to store are represented by a path from their target
stations to the root node, labeled in reverse order; Figure 1 shows an example.

A B C D

DC

E

Fig. 1. DAG for the transfer patterns ‘AE’, ‘ABE’, ‘ABC’, ‘ABDE‘ and ‘ABCDE’. The
root node is the diamond, prefix nodes are circles and target stations are rectangles.
There are potentially several prefix nodes with the same label: In our example, ‘D’
occurs twice, the top one representing the prefix ‘ABD’ and the bottom one ‘ABCD’.

We use the following algorithm transfer patterns(A).
1. Run a multi-criteria variant of Dijkstra’s algorithm [8, 12, 7] starting from

labels of cost zero at all transfer nodes of station A.
2. For every station B, choose optimal connections with the arrival chain

algorithm: For all distinct arrival times t1 < t2 < . . . at B, select a dominant
subset in the set of labels consisting of (i) those settled at the arrival node(s) at
time ti and (ii) those selected for time ti−1, with duration increased by ti− ti−1;
ties to be broken in preference of (ii).

3. Trace back the paths of all labels selected in Step 2. Create the DAG of
transfer patterns of these paths by traversing them from the source A.

Lemma 2. If c is an optimal cost for the query A@t0 → B, transfer patterns(A)
computes the transfer pattern of a feasible connection for the query that realizes
cost c.

Proof. Let c = (d, p). The label set for time t0 + d keeps a label with penalty p
that departs at or after t0. This needs that duration and penalty are optimized
independently (i.e., Pareto-style). For details, see the appendix.

Running transfer patterns(A) for all stations A is easy to parallelize by split-
ting the set of source stations A between machines, but even so, the total running
time remains an issue. We can estimate it as follows. Let s be the number of
stations, let n be the average number of nodes per station (< 569 for all our
graphs, with the optimizations of Section 6), and let ` be the average number
of settled labels per node and per run of transfer patterns(A) (< 16 in all our
experiments, in the setting of Sections 6 and 7). Then the total number of labels
settled by transfer patterns(A) for all stations A is L = ` · n · s2.
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Steps 1–3 have running time essentially linear in L, with logarithmic factors
for maintaining various sets. (For Step 1, this includes the priority queue of
Dijkstra’s algorithm. The bounded out-degree of our graphs bounds the number
of unsettled labels linearly in L.) Since L is quadratic in s, this precomputation is
infeasible in practice for large networks, despite parallelization. We will address
this issue in Sections 5 and 7.

4.3 Query graph construction and evaluation

For a query A@t→ B, we build the query graph as follows, independent of t:
1. Fetch the precomputed transfer patterns DAG for station A.
2. Search target node B in the DAG. Assume it has ` successor nodes with

labels C1, . . . , C`. Add the arcs (C1, B), . . . , (C`, B) to the query graph.
3. Recursively perform Step 2 for each successor node with a label Ci 6= A.

Figure 2 shows the query graph from A to E built from the DAG in Figure 1.

A EB C D

Fig. 2. Query graph A→ E from transfer patterns ‘AE’, ‘ABE’, ‘ABDE’ and ‘ABCDE’.

Lemma 3. For each transfer pattern AC1 . . . CkB in the DAG there exists the
path 〈A,C1, . . . , Ck, B〉 in the constructed query graph.

Proof. The straightforward proof can be found in the appendix.

Given the query graph, evaluating the query is simply a matter of a time-
dependent multi-criteria Dijkstra search [5] on that graph. Labels in the queue
are tuples of station and cost (time and penalty). Relaxing an arc C → D for a
label with time t amounts to a direct-connection query C@t→ D.

By storing parent pointers from each label to its predecessor on the shortest
path, we eventually obtain, for an optimal label at the target station, the se-
quence of transfers on an optimal path from the source to the target, as well as
the times at which we arrive at each of these transfers. More details on the opti-
mal paths can be provided by augmenting the direct-connection data structure.

Theorem 1. For a given query A@t → B, the described search on the query
graph from A to B returns the set of optimal costs and for each such cost a
corresponding path.

Proof. We precomputed transfer patterns for each optimal cost of the query
(Lemma 2) and the paths connecting these transfer stations are in our query
graph (Lemma 3). From the correctly answered direct-connection queries (Lem-
ma 1), the time-dependent Dijkstra algorithm on the query graph computes all
optimal costs including matching paths.
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5 Hub Stations

The preprocessing described in Section 4.2 uses quadratic time and produces a
result of quadratic size. To reduce this, we do these expensive global searches only
from a suitably preselected set of hubs and compute transfer patterns from hubs
to all other stations.5 For all non-hub stations, we do local searches computing
only those transfer patterns without hubs or their parts up to the first hub. More
precisely, let AC1 . . . CkB be a transfer pattern from a non-hub A that we would
have stored in Section 4.2. If any of the Ci is a hub, we do not store this pattern
any more. The hub Ci with minimal i is called an access station of A. We still
store transfer patterns A . . . Ci and Ci . . . B into and out of the access station.
This shrinks transfer patterns enough to allow query processing entirely from
main memory on a single machine, even for large networks (see Section 8).6

Selecting the hubs. We create a time-independent graph by overlaying the nodes
and arcs of each line (as computed in Section 4.1), using the minimum of arc
costs. Then, we perform cost-limited Dijkstra searches from a random sample of
source stations. The stations being on the largest number of shortest paths are
chosen as hubs.7

Transfer patterns computation. The global search remains as described in Sec-
tion 4.2. The local search additionally marks labels stemming from labels at
transfer nodes of hubs as inactive, and stops as soon as all unsettled labels are
inactive [11]. Inactive labels are ignored when the transfer patterns are read off.8

Query graph. Processing a query A@t→ B looks up the set X of access stations
of A and constructs the query graph from the transfer patterns between the
station pairs {(A,B)} ∪ ({A} × X ) ∪ (X × {B}). The evaluation of the query
graph remains unchanged.

Lemma 4. If c is an optimal cost for the query A@t0 → B, then the query
graph from A to B contains the transfer pattern of a feasible connection for the
query that realizes cost c.

Proof. If no suitable transfer pattern A . . . B was computed, then A is a non-hub
with an access station X such that a suitable transfer pattern has been computed
in two parts A . . .X and X . . . B, as we show in the appendix. This needs that
duration and penalty are optimized independently (i.e., Pareto-style).

5 Computing transfer patterns only to other hubs is not faster.
6 The number of global searches could be reduced further by introducing several levels

of hubs, but in our implementation the total cost for the global searches is below the
total cost for the local searches already with one level of hubs; see Section 8.

7 We experimented with a variety of hub selection strategies, but they showed only
little difference with respect to preprocessing time and query graph sizes, and so we
stuck with the simplest strategy.

8 Before that, inactive labels are needed to dominate non-optimal paths around hubs.
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6 Further Refinements

Above, we simplified the presentation of our algorithm. Our actual implementa-
tion includes the following refinements.
Location-to-location. Our implementation answers location-to-location queries.
In the model from Definition 1, the source and target node now stand for the
source and target locations, and they are connected to a selection of source and
target stations nearby with arcs that take the walking cost into consideration.
The query graph is built from transfer patterns for all pairs of source and target
stations. This feature is of high practical value for dense metropolitan networks.
Walking arcs for transfers. Likewise, transfers by walking from stations to
nearby stations are very important in metropolitan networks. We add arcs from
arrival nodes to transfer nodes of useful nearby stations whose costs reflect the
additional walking. This results in about twice more arcs in the graph and dupli-
cates certain entities in the algorithm: transfer patterns now alternate between
riding a vehicle and walking, the query graph requires two nodes per station,
and two global searches from each hub are necessary, as the hub can either be
the arrival or departure station of a transfer.
More compact graph model. In the precomputation, we optimize the representa-
tion of the graph from Section 3 in two ways. Departure nodes are removed and
their predecessors (transfer node and maybe arrival node) are linked directly to
their successor (the next arrival node), cf. [10, §8.1.2]. To exploit the periodicity
of timetables, we roll up the graph modulo one day, that is, we label nodes with
times modulo 24 hours and use bit masks to indicate each trip’s traffic days.
Query graph search. After we have determined the earliest arrival time at the
target station, we execute a backward search to find the optimal connection that
departs latest, see footnote 4 on page 4. Furthermore, we apply the A* heuristic
to goal-direct the searches, using minimal costs between station pairs (computed
along with the direct-connection data structure) as lower bounds.

7 Heuristic Optimizations

The system described so far gives exact results, that is, for each query we get
an optimal connection for every optimal cost. However, despite the use of hubs
(Section 5), the precomputation is not significantly faster than the quadratic
precomputation described in Section 4. The reason is that, although the results
of the local searches (the local transfer patterns) are reasonably small, almost
every local search has a local path of very large cost and hence has to visit
a large portion of the whole network before it can stop. Indeed, this 15 hours
to the nearby village problem is at the core of what makes routing in public
transportation networks so hard [1].

The good news is that with our transfer patterns approach we don’t have
this problem at query time but only in the precomputation. Note here that
our approach is unique in that it precomputes information for all queries, not
just for queries where source and target are sufficiently “far apart”. The bad
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news is that, despite intensive thought, we did not find a solution that is both
fast and exact. We eventually resorted to the following simple but approximate
solution: limit the local searches to at most two transfers, that is, using at most
three vehicles. We call this the 3-legs heuristic, and as we will see in Section 8,
it indeed makes the local searches reasonably fast. Theoretically, we may now
miss some optimal transfer patterns, but we found this to play no role in the
practical use of our algorithm. For example, on our CH graph (Section 8), on
10 000 random queries the 3-leg heuristic gave only three non-optimal results,
and all three of these were only a few percent off the optimum. We remark that
errors in the input data are a much bigger issue in practice.

Having accepted a small fraction of non-optimal results, we also developed
and apply various other heuristics, which may lead to a non-optimal solution
at query time, but whose measured effect in practice is again tolerable. The
following heuristics in combination speed up our query times by a factor of 3–5.

1. In local searches, mark labels as inactive that travel through hubs without
transfer beyond a distance threshold. (Requires fixup in query graph building.)
2. Do only one global search per hub, starting at transfer and arrival nodes.
3. Optimize duration relaxed by penalty [9], thus discarding Pareto-optimal trips
whose improvement in penalty is small in relation to the longer duration.
4. Drop rare transfer patterns if optima on other patterns are almost as good.

In precomputation time, these additional heuristics (esp. reducing the num-
ber of labels with 3.) save roughly another factor of 2. Unlike the 3-leg heuristic,
they are not essential for the feasibility of our approach.

8 Experiments

The experimental results we provide in this section are for a fully-fledged C++
implementation, with all the refinements from Section 6 and all the tricks from
Section 7 included. For precomputation, our experiments were run on a compute
cluster of Opteron and Xeon-based 64-bit servers. Queries were answered by a
single machine of the cluster, with all data in main memory.

Graphs. We ran our experiments on three different graphs: the train + local
transport network of most of Switzerland (CH), the complete transport network
of the larger New York area (NY), and the train + local transport network of
much of North America (NA). Table 1 summarizes the different sizes and types.

name #stations #nodes #arcs space type
CH 20.6 K 3.5 M 11.9 M 64 MB trains + local, well-structured
NY 29.4 K 16.7 M 79.8 M 301 MB mostly local, poor structure
NA 338.1 K 113.2 M 449.1 M 2 038 MB trains + local, poor structure

Table 1. The three public transportation graphs from our experiments.
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Direct-connection queries. Table 2 shows that the preprocessing time for the
direct-connection data structure is negligible compared to the transfer patterns
precomputation time. The space requirement is from 3 MB per 1000 stations for
CH to 10 MB per 1000 stations for NY and NA. A query takes from 2µs for CH
to around 10µs for NY and NA. Note that the larger direct-connection query
time for NY and NA is a yardstick for their poor structure (not for their size).

name precomp. time output size query time
CH < 1 min 68 MB 2µs
NY 4 min 335 MB 5–9µs
NA 49 min 3 399 MB 9–14µs

Table 2. Direct-connection data structure: construction time and size. The query time

range is from getting the fastest to all Pareto-optimal connections.

Transfer patterns precomputation. Our precomputation time (Table 3) is 20–
40 (CPU core) hours per 1 million nodes and the resulting (parts of) transfer
patterns can be stored in 10–50 MB per 1000 stations. Again, these ratios depend
mostly on the structure of the network (best for CH, worst for NY and NA),
and not on its size.

name precomp. time output size #TP/station pair
local global local global local global

CH (w/o hubs) – 635 h – 18 562 MB – 11.0
CH (w/ hubs) 562 h 24 h 229 MB 590 MB 2.6 25.8
CH (heuristic) 57 h 4 h 60 MB 154 MB 2.0 6.8
NY (heuristic) 724 h 64 h 787 MB 786 MB 3.7 16.4
NA (heuristic) 2 632 h 571 h 6 849 MB 7 151 MB 3.4 10.5

Table 3. Transfer patterns precomputation times and results.

Query graph construction and evaluation. Table 4 shows that, on average, query
graph construction and evaluation take 5µs and 15µs per arc, respectively. The
typical number of arcs in a query graph for a station-to-station query (1:1)
is below 1000 and the typical query time is below 10 ms. Location-to-location
queries with 50 source and 50 target stations (50:50) take about 50 ms.

9 Conclusions

We believe that the transfer patterns idea has great potential, and we have shown
some of its potential in this paper. Obvious directions for future research are:
(1) get exact local searches with a feasible precomputation time; (2) make the
precomputation faster; (3) reduce the size of the query graphs; (4) speed up the
(already very fast) direct-connection queries. Transfer patterns are, by their very
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name constr. #arcs (50/mean/90/99) D eval. #arc ev.
CH w/o hubs 1:1 < 1 ms 32 34 56 86 P < 1 ms 89
CH w/ hubs 1:1 1 ms 189 264 569 1286 P 3 ms 540
CH heuristic 1:1 < 1 ms 80 102 184 560 P < 1 ms 194
NY heuristic 1:1 2 ms 433 741 1 917 3 597 P 6 ms 721
NY heuristic 1:1 2 ms 433 741 1 917 3 597 S 3 ms 248
NY heuristic 50:50 32 ms 3 214 6 060 15 878 35 382 S 18 ms 1 413
NA heuristic 1:1 2 ms 261 536 1 277 3 934 P 10 ms 705
NA heuristic 1:1 2 ms 261 536 1 277 3 934 S 5 ms 321
NA heuristic 50:50 22 ms 2 005 3 484 7 240 25 775 S 21 ms 1 596

Table 4. Average query graph construction time, size, and evaluation time. The third

column also provides the median, 90%-ile and 99%-ile. Column ‘D’ is the domination,

either Pareto or Single-criterion (sum of duration and penalty).

nature, also well-suited for so-called profile queries (compute all paths from A
to B over a large time window). We want to explore this potential further.
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A Proofs omitted for brevity

Proof (Lemma 1). Consider the graph from Definition 2. The notion of result
is not changed when we transform the graph as follows: All transfer nodes and
their incident arcs are discarded (this enforces the no-transfer constraint), and
the source node is attached directly to all feasible departure nodes Ad@t′ with
arcs of duration t′−t ≥ 0 and penalty 0. What remains of the graph are precisely
the trips considered in Step 1 of building the direct connection data structure.
The paths from S to T are precisely the occurrences of A before B on a trip of a
line considered in Step 3. The non-overtaking and same-penalty constraints on
the formation of lines implies that, for each occurrence, feasible trips after the
first on the same line do not achieve a better cost. Hence Step 3 finds all optimal
costs.

Proof (Lemma 2). By definition, the optimal cost c is the cost of an optimal
path S → P1 → T in the extended graph from Definition 1, where P1 starts at
some node At@td (the successor of S) and ends at some node Ba@ta.

We will now attach alternative source and target nodes S′ and T ′ to the graph
that reflect the transfer patterns computation. S′ has an arc of duration 0 and
penalty 0 to all transfer nodes of A. This reflects the initial labels. All arrival
nodes Ba@t with t ≤ ta have an arc of duration ta − t and penalty 0 to T ′.
Hence T ′ corresponds to the label set for arrival time ta. A transfer pattern is
computed for a path P ′2 such that S′ → P ′2 → T ′ has better or equal cost than
S′ → P1 → T ′. In particular, P ′2 departs from A no earlier than P1 does.9 That
means, we can prepend to P ′2 the part of the waiting chain of A between the
first node of P1 and the first node of P ′2; let P2 denote this extension of P ′2.

To prove that P2 is the claimed path, it remains to show that S → P1 → T
and S → P2 → T have the same cost. By construction of S′, T ′ and by choice
of P ′2, the following inequalities hold for duration and penalty of the paths:

d(S → P1 → T ) = ta − t0 = d(S → P2 → T ′) ≥ d(S → P2 → T ),
p(S → P1 → T ) = p(S′ → P1 → T ′) ≥ p(S′ → P ′2 → T ′) = p(S → P2 → T ).

By optimality of S → P1 → T , equality holds throughout.

Proof (Lemma 3). Let AC1 . . . CkB be a transfer pattern in the DAG. Induction
over i shows that there is a path 〈Ci, . . . , Ck, B〉 in the query graph, and the node
Ci in the query graph gets processed together with the prefix node ‘AC1 . . . Ci−1’
in the DAG (Steps 2 and 3). Finally, C1 is processed with the root node ‘A’ in
the graph, so that also the arc (A,C1) is added and the path 〈A,C1, . . . , Ck, B〉
exists in the query graph.

Proof (Lemma 4). For a hub A, the global search from A computes the transfer
pattern of a connection to B with the optimal cost c (Lemma 2) and this transfer
pattern is contained in the query graph (Lemma 3).
9 We see here that transfer patterns are computed for paths that are optimal in the

sense of Definition 1 and depart as late as possible, see Footnote 4 on page 4.
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At@t1 . . . Xa@ta . . . Xt@td . . . Ba@t2

S S′T ′ T

Xa@t′a. . . Ba@t′2. . .

P` Pg

Q` Qg

Fig. 3. From the proof of Lemma 4: the optimal S-T -path (top row) that transfers
at X, and the S-T ′- and S′-T -paths (bottom row) that can be joined (dashed arrow)
to an S-T -path of the same optimal cost.

For a non-hubA, we have to show: If the local search fromA does not compute
the transfer pattern of any connection to B with the optimal cost c, then there is
a hub X for which the local search from A computes a transfer pattern A . . .X
and the global search from X computes a transfer pattern X . . . B such that there
is a connection of cost c with the concatenated transfer pattern A . . .X . . . B.
The claim then follows from twofold application of Lemma 3.

If the local search from A does not compute the transfer pattern of any con-
nection to B of optimal cost c, it instead computes an inactive label for (a prefix
of) such a connection. Hence there exist connections to B of cost c that transfer
at a hub. Among these, choose one whose first transfer at a hub occurs with the
earliest arrival time, and consider the path S → P → T representing it in the
graph from Definition 1 for the query A@t0 → B. Recall that S is the source node
at station A and T is the target node at station B. As depicted in Figure 3, we
can decompose P into a prefix P` = 〈At@t1, . . . , Xa@ta〉 up to the arrival at the
first hub X at time ta, a suffix Pg = 〈Xt@td, Xd@td, . . . , Ba@t2〉 from the depar-
ture at X at time td onwards, and the transfer piece Pt = 〈Xa@ta, . . . , Xt@td〉
between them.

The searches from A and X do not, in general, find the paths P` and Pg

or their transfer patterns, but others that can be combined to yield the same
optimal cost. Therefore, we need a somewhat technical argument to derive them.

To derive what the global search from X computes, we consider the query
X@td → B that asks to depart from X no earlier than P . Extending the graph
for this query per Definition 1 yields a source node S′ at X and the same target
node T as before. By Lemma 2, the global search from X computes the transfer
pattern X . . . B of a path S′ → Qg → T whose cost is better than or equal to
the cost of S′ → Pg → T ; in particular, its arrival time t′2 is no later than the
arrival time t2 of Pg, and its penalty score is no worse.

Let us now turn to the local search from A, considering the query A@t0 → X
and, per Definition 1, the source node S at A (as before) and a target node T ′

at X. By choice of P , no connection with cost better than or equal to that of
S → P` → T ′ transfers at a hub before reaching X. Therefore, and by reasoning
analogous to Lemma 2, the local search from A computes the transfer pattern
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A . . .X of a path S → Q` → T ′ with cost better than or equal to that of
S → P` → T ′. In particular, Q` arrives at X no later than P`. Hence there is a
path Qt through the waiting chain of X from the last node Xa@t′a of Q` to the
first node Xt@td of Qg (the dashed arrow in Figure 3).

Let Q = Q` → Qt → Qg. It remains to show that the cost of S → Q→ T is
no worse than the cost of S → P → T (and then necessarily equal, by optimality
of the latter). Duration is no worse because Qg arrives no later than Pg. Penalty
is no worse because Pt and Qt carry the same transfer penalty of X, and the
penalties of Q` and Qg, respectively, are no worse than those of P` and Pg. That
proves our claim.


